BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 16670767)

  • 61. Human plasma cholesteryl ester transfer protein enhances the transfer of cholesteryl ester from high density lipoproteins into cultured HepG2 cells.
    Granot E; Tabas I; Tall AR
    J Biol Chem; 1987 Mar; 262(8):3482-7. PubMed ID: 3029115
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Role of the ABC transporters A1 and G1, key reverse cholesterol transport proteins, in atherosclerosis].
    Demina EP; Miroshnikova VV; Schwarzman AL
    Mol Biol (Mosk); 2016; 50(2):223-30. PubMed ID: 27239842
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Common variants of multiple genes that control reverse cholesterol transport together explain only a minor part of the variation of HDL cholesterol levels.
    Boekholdt SM; Souverein OW; Tanck MW; Hovingh GK; Kuivenhoven JA; Peters RI; Jansen H; Schiffers PM; van der Wall EE; Doevendans PA; Reitsma PH; Zwinderman AH; Kastelein JJ; Jukema JW
    Clin Genet; 2006 Mar; 69(3):263-70. PubMed ID: 16542392
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reverse cholesterol transport--a review of the process and its clinical implications.
    Hill SA; McQueen MJ
    Clin Biochem; 1997 Oct; 30(7):517-25. PubMed ID: 9399019
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Regulation of cholesterol efflux from macrophages.
    Marcel YL; Ouimet M; Wang MD
    Curr Opin Lipidol; 2008 Oct; 19(5):455-61. PubMed ID: 18769226
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Molecular mechanism of reverse cholesterol transport: reaction of pre-beta-migrating high-density lipoprotein with plasma lecithin/cholesterol acyltransferase.
    Nakamura Y; Kotite L; Gan Y; Spencer TA; Fielding CJ; Fielding PE
    Biochemistry; 2004 Nov; 43(46):14811-20. PubMed ID: 15544352
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mechanisms of enhanced cholesteryl ester transfer from high density lipoproteins to apolipoprotein B-containing lipoproteins during alimentary lipemia.
    Tall A; Sammett D; Granot E
    J Clin Invest; 1986 Apr; 77(4):1163-72. PubMed ID: 3958185
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Increased atherosclerosis in P2Y13/apolipoprotein E double-knockout mice: contribution of P2Y13 to reverse cholesterol transport.
    Lichtenstein L; Serhan N; Espinosa-Delgado S; Fabre A; Annema W; Tietge UJ; Robaye B; Boeynaems JM; Laffargue M; Perret B; Martinez LO
    Cardiovasc Res; 2015 May; 106(2):314-23. PubMed ID: 25770145
    [TBL] [Abstract][Full Text] [Related]  

  • 69. SR-BI inhibits ABCG1-stimulated net cholesterol efflux from cells to plasma HDL.
    Yvan-Charvet L; Pagler TA; Wang N; Senokuchi T; Brundert M; Li H; Rinninger F; Tall AR
    J Lipid Res; 2008 Jan; 49(1):107-14. PubMed ID: 17960026
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Apolipoprotein E enhances lipid exchange between lipoproteins mediated by cholesteryl ester transfer protein.
    Kinoshita M; Arai H; Fukasawa M; Watanabe T; Tsukamoto K; Hashimoto Y; Inoue K; Kurokawa K; Teramoto T
    J Lipid Res; 1993 Feb; 34(2):261-8. PubMed ID: 8429260
    [TBL] [Abstract][Full Text] [Related]  

  • 71. ATP-binding cassette transporters A1 and G1, HDL metabolism, cholesterol efflux, and inflammation: important targets for the treatment of atherosclerosis.
    Ye D; Lammers B; Zhao Y; Meurs I; Van Berkel TJ; Van Eck M
    Curr Drug Targets; 2011 May; 12(5):647-60. PubMed ID: 21039336
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Modulation of high-density lipoprotein cholesterol metabolism and reverse cholesterol transport.
    Hersberger M; von Eckardstein A
    Handb Exp Pharmacol; 2005; (170):537-61. PubMed ID: 16596814
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Macrophage, but not systemic, apolipoprotein E is necessary for macrophage reverse cholesterol transport in vivo.
    Zanotti I; Pedrelli M; Potì F; Stomeo G; Gomaraschi M; Calabresi L; Bernini F
    Arterioscler Thromb Vasc Biol; 2011 Jan; 31(1):74-80. PubMed ID: 20966401
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Reverse cholesterol transport and future pharmacological approaches to the treatment of atherosclerosis.
    Krause BR; Auerbach BJ
    Curr Opin Investig Drugs; 2001 Mar; 2(3):375-81. PubMed ID: 11575708
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Absence of cholesteryl ester transfer protein-mediated cholesteryl ester mass transfer from high-density lipoprotein to low-density lipoprotein particles is a major feature of combined hyperlipidaemia.
    Guérin M; Bruckert E; Dolphin PJ; Chapman MJ
    Eur J Clin Invest; 1996 Jun; 26(6):485-94. PubMed ID: 8817163
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Testing the role of apoA-I, HDL, and cholesterol efflux in the atheroprotective action of low-level apoE expression.
    Thorngate FE; Yancey PG; Kellner-Weibel G; Rudel LL; Rothblat GH; Williams DL
    J Lipid Res; 2003 Dec; 44(12):2331-8. PubMed ID: 12951361
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A novel cholesteryl ester transfer protein promoter polymorphism (-971G/A) associated with plasma high-density lipoprotein cholesterol levels. Interaction with the TaqIB and -629C/A polymorphisms.
    Le Goff W; Guerin M; Nicaud V; Dachet C; Luc G; Arveiler D; Ruidavets JB; Evans A; Kee F; Morrison C; Chapman MJ; Thillet J
    Atherosclerosis; 2002 Apr; 161(2):269-79. PubMed ID: 11888509
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Apolipoprotein A-I-stimulated apolipoprotein E secretion from human macrophages is independent of cholesterol efflux.
    Kockx M; Rye KA; Gaus K; Quinn CM; Wright J; Sloane T; Sviridov D; Fu Y; Sullivan D; Burnett JR; Rust S; Assmann G; Anantharamaiah GM; Palgunachari MN; Katz SL; Phillips MC; Dean RT; Jessup W; Kritharides L
    J Biol Chem; 2004 Jun; 279(25):25966-77. PubMed ID: 15066991
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Atorvastatin increases HDL cholesterol by reducing CETP expression in cholesterol-fed APOE*3-Leiden.CETP mice.
    de Haan W; van der Hoogt CC; Westerterp M; Hoekstra M; Dallinga-Thie GM; Princen HM; Romijn JA; Jukema JW; Havekes LM; Rensen PC
    Atherosclerosis; 2008 Mar; 197(1):57-63. PubMed ID: 17868678
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Anacetrapib and dalcetrapib differentially alters HDL metabolism and macrophage-to-feces reverse cholesterol transport at similar levels of CETP inhibition in hamsters.
    Briand F; Thieblemont Q; Muzotte E; Burr N; Urbain I; Sulpice T; Johns DG
    Eur J Pharmacol; 2014 Oct; 740():135-43. PubMed ID: 25008069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.