These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16671008)

  • 1. Inedible producers in food webs: controls on stoichiometric food quality and composition of grazers.
    Hall SR; Leibold MA; Lytle DA; Smith VH
    Am Nat; 2006 May; 167(5):628-37. PubMed ID: 16671008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stoichiometrically explicit competition between grazers: species replacement, coexistence, and priority effects along resource supply gradients.
    Hall SR
    Am Nat; 2004 Aug; 164(2):157-72. PubMed ID: 15278841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paradoxes of enrichment: effects of increased light versus nutrient supply on pelagic producer-grazer systems.
    Diehl S
    Am Nat; 2007 Jun; 169(6):E173-91. PubMed ID: 17479457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of nutrient uptake reveals a trade-off in the ecological stoichiometry of plant-herbivore interactions.
    Branco P; Stomp M; Egas M; Huisman J
    Am Nat; 2010 Dec; 176(6):E162-76. PubMed ID: 20942643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking limitation to species composition: importance of inter- and intra-specific variation in grazing resistance.
    Darcy-Hall TL; Hall SR
    Oecologia; 2008 Apr; 155(4):797-808. PubMed ID: 18193290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can phosphorus limitation inhibit dissolved organic carbon consumption in aquatic microbial food webs? A study of three food web structures in microcosms.
    Olsen LM; Reinertsen H; Vadstein O
    Microb Ecol; 2002 Apr; 43(3):353-66. PubMed ID: 12037613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stoichiometric producer-grazer model incorporating the effects of excess food-nutrient content on consumer dynamics.
    Peace A; Zhao Y; Loladze I; Elser JJ; Kuang Y
    Math Biosci; 2013 Aug; 244(2):107-15. PubMed ID: 23684950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diatom/copepod interactions in plankton: the indirect chemical defense of unicellular algae.
    Pohnert G
    Chembiochem; 2005 Jun; 6(6):946-59. PubMed ID: 15883976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative strengths of benthic algal nutrient and grazer limitation along a lake productivity gradient.
    Darcy-Hall TL
    Oecologia; 2006 Jul; 148(4):660-71. PubMed ID: 16555091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecology: mechanisms for consumer diversity.
    Yoshida T; Jones LE; Ellner SP; Hairston NG
    Nature; 2006 Jan; 439(7072):E1-2; discussion E2. PubMed ID: 16397458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Omnivory and the stability of food webs.
    Vandermeer J
    J Theor Biol; 2006 Feb; 238(3):497-504. PubMed ID: 16111709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling.
    Allen AP; Gillooly JF
    Ecol Lett; 2009 May; 12(5):369-84. PubMed ID: 19379132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stoichiometric mismatch causes a warming-induced regime shift in experimental plankton communities.
    Diehl S; Berger SA; Uszko W; Stibor H
    Ecology; 2022 May; 103(5):e3674. PubMed ID: 35253210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of a producer-grazer model incorporating the effects of excess food nutrient content on grazer's growth.
    Peace A; Wang H; Kuang Y
    Bull Math Biol; 2014 Sep; 76(9):2175-97. PubMed ID: 25124765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compensatory Foraging in Stoichiometric Producer-Grazer Models.
    Peace A; Wang H
    Bull Math Biol; 2019 Dec; 81(12):4932-4950. PubMed ID: 31541384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grazers, producer stoichiometry, and the light : nutrient hypothesis revisited.
    Hall SR; Leibold MA; Lytle DA; Smith VH
    Ecology; 2007 May; 88(5):1142-52. PubMed ID: 17536401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Food web structure and interaction strength pave the way for vulnerability to extinction.
    Karlsson P; Jonsson T; Jonsson A
    J Theor Biol; 2007 Nov; 249(1):77-92. PubMed ID: 17727894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of grazers' species identity on cyanobacteria in bitrophic and tritrophic food webs.
    Fyda J; Nosek J; Wiackowski K; Pajdak-Stós A; Fiałkowska E
    FEMS Microbiol Ecol; 2009 Jun; 68(3):329-39. PubMed ID: 19416350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaos in a long-term experiment with a plankton community.
    Benincà E; Huisman J; Heerkloss R; Jöhnk KD; Branco P; Van Nes EH; Scheffer M; Ellner SP
    Nature; 2008 Feb; 451(7180):822-5. PubMed ID: 18273017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food-web complexity emerging from ecological dynamics on adaptive networks.
    Garcia-Domingo JL; Saldaña J
    J Theor Biol; 2007 Aug; 247(4):819-26. PubMed ID: 17512552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.