These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
372 related articles for article (PubMed ID: 16671047)
1. The prediction of the nuclear quadrupole splitting of 119Sn Mössbauer spectroscopy data by scalar relativistic DFT calculations. Krogh JW; Barone G; Lindh R Chemistry; 2006 Jun; 12(19):5116-21. PubMed ID: 16671047 [TBL] [Abstract][Full Text] [Related]
2. DFT calculations of the electric field gradient at the tin nucleus as a support of structural interpretation by 119Sn Mössbauer spectroscopy. Barone G; Silvestri A; Ruisi G; La Manna G Chemistry; 2005 Oct; 11(21):6185-91. PubMed ID: 16052634 [TBL] [Abstract][Full Text] [Related]
3. Nuclear quadrupole moment of 119Sn. Barone G; Mastalerz R; Reiher M; Lindh R J Phys Chem A; 2008 Feb; 112(7):1666-72. PubMed ID: 18229904 [TBL] [Abstract][Full Text] [Related]
4. Performance of nonrelativistic and quasi-relativistic hybrid DFT for the prediction of electric and magnetic hyperfine parameters in 57Fe Mössbauer spectra. Sinnecker S; Slep LD; Bill E; Neese F Inorg Chem; 2005 Apr; 44(7):2245-54. PubMed ID: 15792459 [TBL] [Abstract][Full Text] [Related]
5. The quadrupole moment of the 3/2+ nuclear ground state of 197Au from electric field gradient relativistic coupled cluster and density-functional theory of small molecules and the solid state. Schwerdtfeger P; Bast R; Gerry MC; Jacob CR; Jansen M; Kellö V; Mudring AV; Sadlej AJ; Saue T; Söhnel T; Wagner FE J Chem Phys; 2005 Mar; 122(12):124317. PubMed ID: 15836388 [TBL] [Abstract][Full Text] [Related]
6. Influence of intermolecular interactions on the Mössbauer quadrupole splitting of organotin(IV) compounds as studied by DFT calculations. Kárpáti S; Szalay R; Császár AG; Süvegh K; Nagy S J Phys Chem A; 2007 Dec; 111(50):13172-81. PubMed ID: 17997529 [TBL] [Abstract][Full Text] [Related]
7. The quadrupole moment of the Sb nucleus from molecular microwave data and calculated relativistic electric-field gradients. Demovic L; Kellö V; Sadlej AJ; Cooke SA J Chem Phys; 2006 May; 124(18):184308. PubMed ID: 16709107 [TBL] [Abstract][Full Text] [Related]
8. An investigation of lanthanum coordination compounds by using solid-state 139La NMR spectroscopy and relativistic density functional theory. Willans MJ; Feindel KW; Ooms KJ; Wasylishen RE Chemistry; 2005 Dec; 12(1):159-68. PubMed ID: 16224769 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of 27Al and 51V electric field gradients and the crystal structure for aluminum orthovanadate (AlVO4) by density functional theory calculations. Hansen MR; Madsen GK; Jakobsen HJ; Skibsted J J Phys Chem B; 2006 Mar; 110(12):5975-83. PubMed ID: 16553406 [TBL] [Abstract][Full Text] [Related]
10. Nuclear quadrupole moment of 139La from relativistic electronic structure calculations of the electric field gradients in LaF, LaCl, LaBr, and LaI. Jacob CR; Visscher L; Thierfelder C; Schwerdtfeger P J Chem Phys; 2007 Nov; 127(20):204303. PubMed ID: 18052423 [TBL] [Abstract][Full Text] [Related]
11. Refinement of borate structures from 11B MAS NMR spectroscopy and density functional theory calculations of 11B electric field gradients. Hansen MR; Madsen GK; Jakobsen HJ; Skibsted J J Phys Chem A; 2005 Mar; 109(9):1989-97. PubMed ID: 16833533 [TBL] [Abstract][Full Text] [Related]
12. Dispersion-Corrected Relativistic Density Functional Theory (DFT) Calculations of Structure and (119)Sn Mössbauer Parameters for M≡SnR Bonding in Filippou's Stannylidyne Complexes of Molybdenum and Tungsten. Pandey KK Inorg Chem; 2015 Nov; 54(22):10849-54. PubMed ID: 26496184 [TBL] [Abstract][Full Text] [Related]
13. The nature of the hydrogen bond in the LaNiSnH2 and NdNiSnH hydrides. Spataru T; Palade P; Principi G; Blaha P; Schwarz K; Kuncser V; Lo Russo S; Dal Toé S; Yartys VA J Chem Phys; 2005 Mar; 122(12):124703. PubMed ID: 15836405 [TBL] [Abstract][Full Text] [Related]
14. Evidence for basic ferryls in cytochromes P450. Behan RK; Hoffart LM; Stone KL; Krebs C; Green MT J Am Chem Soc; 2006 Sep; 128(35):11471-4. PubMed ID: 16939270 [TBL] [Abstract][Full Text] [Related]
15. Nuclear quadrupole moment of 197Au from high-accuracy atomic calculations. Yakobi H; Eliav E; Kaldor U J Chem Phys; 2007 May; 126(18):184305. PubMed ID: 17508801 [TBL] [Abstract][Full Text] [Related]
16. Performance of relativistic effective core potentials in DFT calculations on actinide compounds. Odoh SO; Schreckenbach G J Phys Chem A; 2010 Feb; 114(4):1957-63. PubMed ID: 20039716 [TBL] [Abstract][Full Text] [Related]
17. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH. Straka M; Lantto P; Räsänen M; Vaara J J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389 [TBL] [Abstract][Full Text] [Related]
18. Calculations of nuclear quadrupole coupling in noble gas-noble metal fluorides: interplay of relativistic and electron correlation effects. Lantto P; Vaara J J Chem Phys; 2006 Nov; 125(17):174315. PubMed ID: 17100447 [TBL] [Abstract][Full Text] [Related]
19. Nuclear electric quadrupole moment of gold. Belpassi L; Tarantelli F; Sgamellotti A; Quiney HM; van Stralen JN; Visscher L J Chem Phys; 2007 Feb; 126(6):064314. PubMed ID: 17313222 [TBL] [Abstract][Full Text] [Related]
20. Spin-spin contributions to the zero-field splitting tensor in organic triplets, carbenes and biradicals-a density functional and ab initio study. Sinnecker S; Neese F J Phys Chem A; 2006 Nov; 110(44):12267-75. PubMed ID: 17078624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]