These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 16671048)

  • 1. Conformational behavior of pyrazine-bridged and mixed-bridged cavitands: a general model for solvent effects on thermal "vase-kite" switching.
    Roncucci P; Pirondini L; Paderni G; Massera C; Dalcanale E; Azov VA; Diederich F
    Chemistry; 2006 Jun; 12(18):4775-84. PubMed ID: 16671048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of redox-switchable resorcin[4]arene cavitands.
    Pochorovski I; Diederich F
    Acc Chem Res; 2014 Jul; 47(7):2096-105. PubMed ID: 24814219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zn(II)-induced conformational control of amphiphilic cavitands in langmuir monolayers.
    Frei M; Marotti F; Diederich F
    Chem Commun (Camb); 2004 Jun; (12):1362-3. PubMed ID: 15179465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FRET studies on a series of BODIPY-dye-labeled switchable resorcin[4]arene cavitands.
    Pochorovski I; Breiten B; Schweizer WB; Diederich F
    Chemistry; 2010 Nov; 16(42):12590-602. PubMed ID: 20865704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of hydrogen-bond acceptors for redox-switchable resorcin[4]arene cavitands.
    Pochorovski I; Milić J; Kolarski D; Gropp C; Schweizer WB; Diederich F
    J Am Chem Soc; 2014 Mar; 136(10):3852-8. PubMed ID: 24568570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton driven vase-to-kite conformational change in cavitands at an air-water interface monitored by surface SHG.
    Lagugné-Labarthet F; An YQ; Yu T; Shen YR; Dalcanale E; Shenoy DK
    Langmuir; 2005 Aug; 21(16):7066-70. PubMed ID: 16042423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hinged molecular capsules: synthesis and conformational control via temperature, pH, or solvent composition.
    Kang SW; Castro PP; Zhao G; Nuñez JE; Godinez CE; Gutierrez-Tunstad LM
    J Org Chem; 2006 Feb; 71(3):1240-3. PubMed ID: 16438545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-switchable resorcin[4]arene cavitands: molecular grippers.
    Pochorovski I; Ebert MO; Gisselbrecht JP; Boudon C; Schweizer WB; Diederich F
    J Am Chem Soc; 2012 Sep; 134(36):14702-5. PubMed ID: 22906195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, structure, and binding properties of lipophilic cavitands based on a calix[4]pyrrole-resorcinarene hybrid scaffold.
    Galán A; Escudero-Adán EC; Frontera A; Ballester P
    J Org Chem; 2014 Jun; 79(12):5545-57. PubMed ID: 24846099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-switching and self-inclusion of functional cavitands.
    Amrhein P; Shivanyuk A; Johnson DW; Rebek J
    J Am Chem Soc; 2002 Sep; 124(35):10349-58. PubMed ID: 12197737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanically-Driven Vase-Kite Conformational Switch in Cavitand Cross-Linked Polyurethanes.
    Torelli M; Terenziani F; Pedrini A; Guagnini F; Domenichelli I; Massera C; Dalcanale E
    ChemistryOpen; 2020 Feb; 9(2):261-268. PubMed ID: 32128296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Larger Substituents on Amide Cavitands Induce Bigger Cavities.
    Aroua S; Lowell AN; Ray A; Trapp N; Schweizer WB; Ebert MO; Yamakoshi Y
    Org Lett; 2019 Jan; 21(1):201-205. PubMed ID: 30565950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensing vase-to-kite switching of cavitands by sum-frequency vibrational spectroscopy.
    Pagliusi P; Lagugné-Labarthet F; Shenoy DK; Dalcanale E; Shen YR
    J Am Chem Soc; 2006 Oct; 128(39):12610-1. PubMed ID: 17002330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimuli-Responsive Resorcin[4]arene Cavitands: Toward Visible-Light-Activated Molecular Grippers.
    García-López V; Zalibera M; Trapp N; Kuss-Petermann M; Wenger OS; Diederich F
    Chemistry; 2020 Sep; 26(50):11451-11461. PubMed ID: 32780914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition with metallo cavitands.
    Rahman FU; Li YS; Petsalakis ID; Theodorakopoulos G; Rebek J; Yu Y
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):17648-17653. PubMed ID: 31427538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent-manipulated guest binding and signaling of a fluorescent resorcin[4]arene cavitand with 1,3,2-benzodiazaboryl D-π-A conjugation flaps.
    Otsuka K; Kondo T; Nishiyabu R; Kubo Y
    J Org Chem; 2013 Jun; 78(11):5782-7. PubMed ID: 23668321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective steroid recognition by a partially bridged resorcin[4]arene cavitand.
    Cacciarini M; Azov VA; Seiler P; Künzer H; Diederich F
    Chem Commun (Camb); 2005 Nov; (42):5269-71. PubMed ID: 16244724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cycloalkane and alicyclic heterocycle complexation by new switchable resorcin[4]arene-based container molecules: NMR and ITC binding studies.
    Hornung J; Fankhauser D; Shirtcliff LD; Praetorius A; Schweizer WB; Diederich F
    Chemistry; 2011 Oct; 17(44):12362-71. PubMed ID: 21938749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrazide as a new hydrogen-bonding motif for resorcin[4]arene-based molecular capsules.
    Park YS; Paek K
    Org Lett; 2008 Nov; 10(21):4867-70. PubMed ID: 18834140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand effects on the structures and magnetic properties of tricyanomethanide-containing copper(II) complexes.
    Yuste C; Bentama A; Stiriba SE; Armentano D; De Munno G; Lloret F; Julve M
    Dalton Trans; 2007 Nov; (44):5190-200. PubMed ID: 17985027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.