BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16671557)

  • 1. Temperature dependence of H+ transport across erythrocyte membrane of Rana temporaria grass frog in media containing Cl- and SO4(2-).
    Mishchenko AA; Irzhak LI
    Bull Exp Biol Med; 2005 Oct; 140(4):381-2. PubMed ID: 16671557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of anion transport in the human red blood cell.
    Glibowicka M; Winckler B; Araníbar N; Schuster M; Hanssum H; Rüterjans H; Passow H
    Biochim Biophys Acta; 1988 Dec; 946(2):345-58. PubMed ID: 3207750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between H+ transfer through human erythrocyte membrane and temperature.
    Mishchenko AA; Irzhak LI
    Bull Exp Biol Med; 2004 Jul; 138(1):45-6. PubMed ID: 15514720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiolabeling of erythrocytes with technetium-99m: role of band-3 protein in the transport of pertechnetate across the cell membrane.
    Callahan RJ; Rabito CA
    J Nucl Med; 1990 Dec; 31(12):2004-10. PubMed ID: 2176234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and mechanism of anion transport in red blood cells.
    Jennings ML
    Annu Rev Physiol; 1985; 47():519-33. PubMed ID: 3922288
    [No Abstract]   [Full Text] [Related]  

  • 6. Band 3 protein-mediated nonelectrogenic proton equilibration across the membranes of the red blood cells of mammals, amphibians, and fish.
    Passow H; Berghout A; Romano L
    Prog Clin Biol Res; 1984; 164():95-102. PubMed ID: 6097916
    [No Abstract]   [Full Text] [Related]  

  • 7. Inverse effects of dansylation of red blood cell membrane on band 3 protein-mediated transport of sulphate and chloride.
    Lepke S; Passow H
    J Physiol; 1982 Jul; 328():27-48. PubMed ID: 6897945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of dansylation on the pH dependence of SO4(2-) and Cl- equilibrium exchange and on the H+/SO4(2-) cotransport across the red blood cell membrane.
    Berghout A; Raida M; Legrum B; Passow H
    Biochim Biophys Acta; 1989 Nov; 986(1):75-82. PubMed ID: 2819098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of histidine 752 and glutamate 699 in the pH dependence of mouse band 3 protein-mediated anion transport.
    Müller-Berger S; Karbach D; Kang D; Aranibar N; Wood PG; Rüterjans H; Passow H
    Biochemistry; 1995 Jul; 34(29):9325-32. PubMed ID: 7626601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of inorganic anion transport across the human red blood cell membrane by chloride-dependent association of dipyridamole with a stilbene disulfonate binding site on the band 3 protein.
    Legrum B; Passow H
    Biochim Biophys Acta; 1989 Feb; 979(2):193-207. PubMed ID: 2923878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of membrane potential on electrically silent transport. Potential-independent translocation and asymmetric potential-dependent substrate binding to the red blood cell anion exchange protein.
    Jennings ML; Schulz RK; Allen M
    J Gen Physiol; 1990 Nov; 96(5):991-1012. PubMed ID: 2280255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anion transport systems in the mouse erythrocyte: kinetic studies in situ and after expression of mouse erythroid band 3 protein in oocytes of Xenopus laevis.
    Passow H; Raida M; Wendel J; Legrum B; Bartel D; Lepke S; Furuto-Kato S
    Biochem Soc Trans; 1989 Oct; 17(5):812-5. PubMed ID: 2620762
    [No Abstract]   [Full Text] [Related]  

  • 13. Chloride-sulphate exchange chemically measured in human erythrocyte ghosts.
    Romano L; Peritore D; Simone E; Sidoti A; Trischitta F; Romano P
    Cell Mol Biol (Noisy-le-grand); 1998 Mar; 44(2):351-5. PubMed ID: 9593586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA; Gunn RB
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The physiology of anion transport in red cells.
    Brahm J
    Prog Hematol; 1986; 14():1-21. PubMed ID: 2418461
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterization of the Band 3 substrate site in human red cell ghosts by NDS-TEMPO, a disulfonatostilbene spin probe: the function of protons in NDS-TEMPO and substrate-anion binding in relation to anion transport.
    Kaufmann E; Eberl G; Schnell KF
    J Membr Biol; 1986; 91(2):129-46. PubMed ID: 3018256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition and stimulation of K+ transport across the frog erythrocyte membrane by furosemide, DIOA, DIDS and quinine.
    Gusev GP; Lapin AV; Agalakova NI
    Gen Physiol Biophys; 1999 Sep; 18(3):269-82. PubMed ID: 10703743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfate transport in human neutrophils.
    Simchowitz L; Davis AO
    J Gen Physiol; 1989 Jul; 94(1):95-124. PubMed ID: 2478661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton-sulfate cotransport: external proton activation of sulfate influx into human red blood cells.
    Milanick MA; Gunn RB
    Am J Physiol; 1984 Sep; 247(3 Pt 1):C247-59. PubMed ID: 6089577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of fluoride and vanadate on K+ transport across the erythrocyte membrane of Rana temporaria.
    Agalakova NI; Lapin AV; Gusev GP
    Membr Cell Biol; 2000; 13(4):527-36. PubMed ID: 10926370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.