These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 16671727)

  • 1. Hydrophobic contribution of amino acids in peptides measured by hydrophobic interaction chromatography.
    Liu CI; Hsu KY; Ruaan RC
    J Phys Chem B; 2006 May; 110(18):9148-54. PubMed ID: 16671727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of hydrophobic interaction chromatography of acetyl amino acid methyl esters.
    Rowe GE; Aomari H; Chevaldina T; Lafrance M; St-Arnaud S
    J Chromatogr A; 2008 Jan; 1177(2):243-53. PubMed ID: 17919646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retention prediction of peptide diastereomers in reversed-phase liquid chromatography assisted by molecular dynamics simulation.
    Tsai CW; Chen WY; Ruaan RC
    Langmuir; 2012 Sep; 28(38):13601-8. PubMed ID: 22946847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Enthalpy of interaction of amino acids and peptides with 6-azauracil in water].
    Lapshev PV; Kulikov OV; Parfeniuk EV
    Biofizika; 1996; 41(6):1157-62. PubMed ID: 9044612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvation thermodynamics of amino acid side chains on a short peptide backbone.
    Hajari T; van der Vegt NF
    J Chem Phys; 2015 Apr; 142(14):144502. PubMed ID: 25877585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid adsorption on mesoporous materials: influence of types of amino acids, modification of mesoporous materials, and solution conditions.
    Gao Q; Xu W; Xu Y; Wu D; Sun Y; Deng F; Shen W
    J Phys Chem B; 2008 Feb; 112(7):2261-7. PubMed ID: 18217746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption characteristics of oligopeptides composed of acidic and basic amino acids on titanium surface.
    Imamura K; Kawasaki Y; Nagayasu T; Sakiyama T; Nakanishi K
    J Biosci Bioeng; 2007 Jan; 103(1):7-12. PubMed ID: 17298894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular hydrophobic attraction and ion-specific effects studied by molecular dynamics.
    Horinek D; Serr A; Bonthuis DJ; Boström M; Kunz W; Netz RR
    Langmuir; 2008 Feb; 24(4):1271-83. PubMed ID: 18220430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enthalpic pair interaction coefficient between zwitterions of L-alpha-amino acids and urea molecule as a hydrophobicity parameter of amino acid side chains.
    Palecz B
    J Am Chem Soc; 2005 Dec; 127(50):17768-71. PubMed ID: 16351105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcalorimetric studies of the mechanism of interaction between designed peptides and hydrophobic adsorbents.
    Huang HM; Chen WY; Ruaan RC
    J Colloid Interface Sci; 2003 Jul; 263(1):23-8. PubMed ID: 12804880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining intrinsic hydrophobicity of amino acids' side chains in random coil conformation. Reversed-phase liquid chromatography of designed synthetic peptides vs. random peptide data sets.
    Shamshurin D; Spicer V; Krokhin OV
    J Chromatogr A; 2011 Sep; 1218(37):6348-55. PubMed ID: 21798546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobic amino acid adsorption on surfaces of varying wettability.
    Trudeau TG; Hore DK
    Langmuir; 2010 Jul; 26(13):11095-102. PubMed ID: 20507146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of N-terminal hydrophobicity of cationic peptides on thermodynamics of their interaction with plasmid DNA.
    Goparaju GN; Bruist MF; Chandran CS; Gupta PK
    Chem Biol Drug Des; 2009 May; 73(5):502-10. PubMed ID: 19366359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Hydration enthalpy characteristics of amino acids in solutions].
    Tiunina EIu; Badelin VG
    Biofizika; 2005; 50(6):965-73. PubMed ID: 16358773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of conformation effects on the retention of small peptides in reversed-phase chromatography by thermodynamic analysis and molecular dynamics simulation.
    Tsai CW; Liu CI; Chan YC; Tsai HH; Ruaan RC
    J Phys Chem B; 2010 Sep; 114(35):11620-7. PubMed ID: 20712332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid chromatography at critical conditions: comprehensive approach to sequence-dependent retention time prediction.
    Gorshkov AV; Tarasova IA; Evreinov VV; Savitski MM; Nielsen ML; Zubarev RA; Gorshkov MV
    Anal Chem; 2006 Nov; 78(22):7770-7. PubMed ID: 17105170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benzoyl derivatization as a method to improve retention of hydrophilic peptides in tryptic peptide mapping.
    Julka S; Regnier FE
    Anal Chem; 2004 Oct; 76(19):5799-806. PubMed ID: 15456300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of micelle formation in water, hydrophobic processes and surfactant self-assemblies.
    Fisicaro E; Compari C; Duce E; Biemmi M; Peroni M; Braibanti A
    Phys Chem Chem Phys; 2008 Jul; 10(26):3903-14. PubMed ID: 18688390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature of molecular interactions of peptides with gold, palladium, and Pd-Au bimetal surfaces in aqueous solution.
    Heinz H; Farmer BL; Pandey RB; Slocik JM; Patnaik SS; Pachter R; Naik RR
    J Am Chem Soc; 2009 Jul; 131(28):9704-14. PubMed ID: 19552440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation of the influence of chain length on the interfacial ordering of L-lysine and L-proline and their homopeptides at hydrophobic and hydrophilic interfaces studied by sum frequency generation and quartz crystal microbalance.
    York RL; Holinga GJ; Somorjai GA
    Langmuir; 2009 Aug; 25(16):9369-74. PubMed ID: 19719227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.