These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16671749)

  • 1. Electrostatics of ligand binding: parametrization of the generalized Born model and comparison with the Poisson-Boltzmann approach.
    Liu HY; Zou X
    J Phys Chem B; 2006 May; 110(18):9304-13. PubMed ID: 16671749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new set of atomic radii for accurate estimation of solvation free energy by Poisson-Boltzmann solvent model.
    Yamagishi J; Okimoto N; Morimoto G; Taiji M
    J Comput Chem; 2014 Nov; 35(29):2132-9. PubMed ID: 25220475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning Potential Functions to Host-Guest Binding Data.
    Setiadi J; Boothroyd S; Slochower DR; Dotson DL; Thompson MW; Wagner JR; Wang LP; Gilson MK
    J Chem Theory Comput; 2024 Jan; 20(1):239-252. PubMed ID: 38147689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary structure bias in generalized Born solvent models: comparison of conformational ensembles and free energy of solvent polarization from explicit and implicit solvation.
    Roe DR; Okur A; Wickstrom L; Hornak V; Simmerling C
    J Phys Chem B; 2007 Feb; 111(7):1846-57. PubMed ID: 17256983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bluues: a program for the analysis of the electrostatic properties of proteins based on generalized Born radii.
    Fogolari F; Corazza A; Yarra V; Jalaru A; Viglino P; Esposito G
    BMC Bioinformatics; 2012 Mar; 13 Suppl 4(Suppl 4):S18. PubMed ID: 22536964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation.
    Izadi S; Aguilar B; Onufriev AV
    J Chem Theory Comput; 2015 Sep; 11(9):4450-9. PubMed ID: 26575935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multidimensional Global Optimization and Robustness Analysis in the Context of Protein-Ligand Binding.
    Forouzesh N; Mukhopadhyay A; Watson LT; Onufriev AV
    J Chem Theory Comput; 2020 Jul; 16(7):4669-4684. PubMed ID: 32450041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.
    Rocklin GJ; Mobley DL; Dill KA; Hünenberger PH
    J Chem Phys; 2013 Nov; 139(18):184103. PubMed ID: 24320250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refinement of Generalized Born Implicit Solvation Parameters for Nucleic Acids and Their Complexes with Proteins.
    Nguyen H; Pérez A; Bermeo S; Simmerling C
    J Chem Theory Comput; 2015 Aug; 11(8):3714-28. PubMed ID: 26574454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy functions for protein design I: efficient and accurate continuum electrostatics and solvation.
    Pokala N; Handel TM
    Protein Sci; 2004 Apr; 13(4):925-36. PubMed ID: 15010542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential geometry based solvation model II: Lagrangian formulation.
    Chen Z; Baker NA; Wei GW
    J Math Biol; 2011 Dec; 63(6):1139-200. PubMed ID: 21279359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarizable Atomic Multipole Solutes in a Generalized Kirkwood Continuum.
    Schnieders MJ; Ponder JW
    J Chem Theory Comput; 2007 Nov; 3(6):2083-97. PubMed ID: 26636202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the GB/SA solvation model for predicting the structure of surface loops in proteins.
    Szarecka A; Meirovitch H
    J Phys Chem B; 2006 Feb; 110(6):2869-80. PubMed ID: 16471897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins.
    Im W; Feig M; Brooks CL
    Biophys J; 2003 Nov; 85(5):2900-18. PubMed ID: 14581194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate, robust, and reliable calculations of Poisson-Boltzmann binding energies.
    Nguyen DD; Wang B; Wei GW
    J Comput Chem; 2017 May; 38(13):941-948. PubMed ID: 28211071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized Born Implicit Solvent Models for Biomolecules.
    Onufriev AV; Case DA
    Annu Rev Biophys; 2019 May; 48():275-296. PubMed ID: 30857399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introducing Charge Hydration Asymmetry into the Generalized Born Model.
    Mukhopadhyay A; Aguilar BH; Tolokh IS; Onufriev AV
    J Chem Theory Comput; 2014 Apr; 10(4):1788-1794. PubMed ID: 24803871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LS-VISM: A software package for analysis of biomolecular solvation.
    Zhou S; Cheng LT; Sun H; Che J; Dzubiella J; Li B; McCammon JA
    J Comput Chem; 2015 May; 36(14):1047-59. PubMed ID: 25766844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MLIMC: Machine Learning-Based Implicit-Solvent Monte Carlo.
    Chen J; Geng W; Wei GW
    Chi J Chem Phys; 2021 Dec; 34(6):683-694. PubMed ID: 35024043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inclusion of Water Multipoles into the Implicit Solvation Framework Leads to Accuracy Gains.
    Tolokh IS; Folescu DE; Onufriev AV
    J Phys Chem B; 2024 Jun; 128(24):5855-5873. PubMed ID: 38860842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.