BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16672149)

  • 1. Hyperfiltration, nitric oxide, and diabetic nephropathy.
    Levine DZ
    Curr Hypertens Rep; 2006 May; 8(2):153-7. PubMed ID: 16672149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the macula densa sodium glucose cotransporter type 1-neuronal nitric oxide synthase-tubuloglomerular feedback pathway in diabetic hyperfiltration.
    Zhang J; Cai J; Cui Y; Jiang S; Wei J; Kim YC; Chan J; Thalakola A; Le T; Xu L; Wang L; Jiang K; Wang X; Wang H; Cheng F; Buggs J; Koepsell H; Vallon V; Liu R
    Kidney Int; 2022 Mar; 101(3):541-550. PubMed ID: 34843754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time measurement of kidney tubule fluid nitric oxide concentrations in early diabetes: disparate changes in different rodent models.
    Levine DZ; Iacovitti M
    Nitric Oxide; 2006 Aug; 15(1):87-92. PubMed ID: 16510300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can rodent models of diabetic kidney disease clarify the significance of early hyperfiltration?: recognizing clinical and experimental uncertainties.
    Levine DZ
    Clin Sci (Lond); 2008 Jan; 114(2):109-18. PubMed ID: 18062776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macula Densa SGLT1-NOS1-Tubuloglomerular Feedback Pathway, a New Mechanism for Glomerular Hyperfiltration during Hyperglycemia.
    Zhang J; Wei J; Jiang S; Xu L; Wang L; Cheng F; Buggs J; Koepsell H; Vallon V; Liu R
    J Am Soc Nephrol; 2019 Apr; 30(4):578-593. PubMed ID: 30867247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of single-nephron GFR in the db/db mouse model of type 2 diabetes mellitus.
    Levine DZ; Iacovitti M; Robertson SJ; Mokhtar GA
    Am J Physiol Regul Integr Comp Physiol; 2006 Apr; 290(4):R975-81. PubMed ID: 16339386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of single-nephron GFR in the db/db mouse model of type 2 diabetes mellitus. II. Effects of renal mass reduction.
    Levine DZ; Iacovitti M; Robertson SJ
    Am J Physiol Regul Integr Comp Physiol; 2008 Jun; 294(6):R1840-6. PubMed ID: 18417648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-protein-induced glomerular hyperfiltration is independent of the tubuloglomerular feedback mechanism and nitric oxide synthases.
    Sällström J; Carlström M; Olerud J; Fredholm BB; Kouzmine M; Sandler S; Persson AE
    Am J Physiol Regul Integr Comp Physiol; 2010 Nov; 299(5):R1263-8. PubMed ID: 20739607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of A1 adenosine receptors augments diabetic hyperfiltration and glomerular injury.
    Faulhaber-Walter R; Chen L; Oppermann M; Kim SM; Huang Y; Hiramatsu N; Mizel D; Kajiyama H; Zerfas P; Briggs JP; Kopp JB; Schnermann J
    J Am Soc Nephrol; 2008 Apr; 19(4):722-30. PubMed ID: 18256360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tubular reabsorption and diabetes-induced glomerular hyperfiltration.
    Persson P; Hansell P; Palm F
    Acta Physiol (Oxf); 2010 Sep; 200(1):3-10. PubMed ID: 20518753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moving closer to an understanding of the hyperfiltration of type 2 diabetes mellitus.
    Wesson DE
    Am J Physiol Regul Integr Comp Physiol; 2006 Apr; 290(4):R973-4. PubMed ID: 16537822
    [No Abstract]   [Full Text] [Related]  

  • 12. Insulin induces the correlation between renal blood flow and glomerular filtration rate in diabetes: implications for mechanisms causing hyperfiltration.
    Pihl L; Persson P; Fasching A; Hansell P; DiBona GF; Palm F
    Am J Physiol Regul Integr Comp Physiol; 2012 Jul; 303(1):R39-47. PubMed ID: 22461175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tubular hypothesis of nephron filtration and diabetic kidney disease.
    Vallon V; Thomson SC
    Nat Rev Nephrol; 2020 Jun; 16(6):317-336. PubMed ID: 32152499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of nitric oxide in the pathogenesis of diabetic nephropathy in streptozotocin-induced diabetic rats.
    Choi KC; Lee SC; Kim SW; Kim NH; Lee JU; Kang YJ
    Korean J Intern Med; 1999 Jan; 14(1):32-41. PubMed ID: 10063312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabetes-induced hyperfiltration in adenosine A(1)-receptor deficient mice lacking the tubuloglomerular feedback mechanism.
    Sällström J; Carlsson PO; Fredholm BB; Larsson E; Persson AE; Palm F
    Acta Physiol (Oxf); 2007 Jul; 190(3):253-9. PubMed ID: 17581137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes.
    De Nicola L; Gabbai FB; Liberti ME; Sagliocca A; Conte G; Minutolo R
    Am J Kidney Dis; 2014 Jul; 64(1):16-24. PubMed ID: 24673844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knockout of Na
    Song P; Huang W; Onishi A; Patel R; Kim YC; van Ginkel C; Fu Y; Freeman B; Koepsell H; Thomson S; Liu R; Vallon V
    Am J Physiol Renal Physiol; 2019 Jul; 317(1):F207-F217. PubMed ID: 31091127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide synthase isoforms and glomerular hyperfiltration in early diabetic nephropathy.
    Veelken R; Hilgers KF; Hartner A; Haas A; Böhmer KP; Sterzel RB
    J Am Soc Nephrol; 2000 Jan; 11(1):71-79. PubMed ID: 10616842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Update on Pathogenesis of Glomerular Hyperfiltration in Early Diabetic Kidney Disease.
    Yang Y; Xu G
    Front Endocrinol (Lausanne); 2022; 13():872918. PubMed ID: 35663316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary proximal tubule hyperreabsorption and impaired tubular transport counterregulation determine glomerular hyperfiltration in diabetes: a modeling analysis.
    Hallow KM; Gebremichael Y; Helmlinger G; Vallon V
    Am J Physiol Renal Physiol; 2017 May; 312(5):F819-F835. PubMed ID: 28148531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.