These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 16672150)
1. Sodium transporters in the distal nephron and disease implications. Ecelbarger CA; Tiwari S Curr Hypertens Rep; 2006 May; 8(2):158-65. PubMed ID: 16672150 [TBL] [Abstract][Full Text] [Related]
2. Increased expression and apical targeting of renal ENaC subunits in puromycin aminonucleoside-induced nephrotic syndrome in rats. Kim SW; Wang W; Nielsen J; Praetorius J; Kwon TH; Knepper MA; Frøkiaer J; Nielsen S Am J Physiol Renal Physiol; 2004 May; 286(5):F922-35. PubMed ID: 15075188 [TBL] [Abstract][Full Text] [Related]
3. Differential expression of Na+-Cl- cotransporter and Na+-K+-Cl- cotransporter 2 in the distal nephrons of euryhaline and seawater pufferfishes. Kato A; Muro T; Kimura Y; Li S; Islam Z; Ogoshi M; Doi H; Hirose S Am J Physiol Regul Integr Comp Physiol; 2011 Feb; 300(2):R284-97. PubMed ID: 21084680 [TBL] [Abstract][Full Text] [Related]
4. Segment-specific ENaC downregulation in kidney of rats with lithium-induced NDI. Nielsen J; Kwon TH; Praetorius J; Kim YH; Frøkiaer J; Knepper MA; Nielsen S Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1198-209. PubMed ID: 12928314 [TBL] [Abstract][Full Text] [Related]
5. Abnormal reabsorption of Na+/CI- by the thiazide-inhibitable transporter of the distal convoluted tubule in Gitelman's syndrome. Colussi G; Rombolà G; Brunati C; De Ferrari ME Am J Nephrol; 1997; 17(2):103-11. PubMed ID: 9096439 [TBL] [Abstract][Full Text] [Related]
7. Long-term regulation of renal Na-dependent cotransporters and ENaC: response to altered acid-base intake. Kim GH; Martin SW; Fernández-Llama P; Masilamani S; Packer RK; Knepper MA Am J Physiol Renal Physiol; 2000 Sep; 279(3):F459-67. PubMed ID: 10966925 [TBL] [Abstract][Full Text] [Related]
8. Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman's syndrome. Loffing J; Vallon V; Loffing-Cueni D; Aregger F; Richter K; Pietri L; Bloch-Faure M; Hoenderop JG; Shull GE; Meneton P; Kaissling B J Am Soc Nephrol; 2004 Sep; 15(9):2276-88. PubMed ID: 15339977 [TBL] [Abstract][Full Text] [Related]
9. Metabolic acidosis has dual effects on sodium handling by rat kidney. Faroqui S; Sheriff S; Amlal H Am J Physiol Renal Physiol; 2006 Aug; 291(2):F322-31. PubMed ID: 16495212 [TBL] [Abstract][Full Text] [Related]
10. Profiling of renal tubule Na+ transporter abundances in NHE3 and NCC null mice using targeted proteomics. Brooks HL; Sorensen AM; Terris J; Schultheis PJ; Lorenz JN; Shull GE; Knepper MA J Physiol; 2001 Feb; 530(Pt 3):359-66. PubMed ID: 11158268 [TBL] [Abstract][Full Text] [Related]
11. Increased apical targeting of renal ENaC subunits and decreased expression of 11betaHSD2 in HgCl2-induced nephrotic syndrome in rats. Kim SW; de Seigneux S; Sassen MC; Lee J; Kim J; Knepper MA; Frøkiaer J; Nielsen S Am J Physiol Renal Physiol; 2006 Mar; 290(3):F674-87. PubMed ID: 16189294 [TBL] [Abstract][Full Text] [Related]
12. Upregulation of apical sodium-chloride cotransporter and basolateral chloride channels is responsible for the maintenance of salt-sensitive hypertension. Capasso G; Rizzo M; Garavaglia ML; Trepiccione F; Zacchia M; Mugione A; Ferrari P; Paulmichl M; Lang F; Loffing J; Carrel M; Damiano S; Wagner CA; Bianchi G; Meyer G Am J Physiol Renal Physiol; 2008 Aug; 295(2):F556-67. PubMed ID: 18480177 [TBL] [Abstract][Full Text] [Related]
13. Channels, carriers, and pumps in the pathogenesis of sodium-sensitive hypertension. Capasso G; Cantone A; Evangelista C; Zacchia M; Trepiccione F; Acone D; Rizzo M Semin Nephrol; 2005 Nov; 25(6):419-24. PubMed ID: 16298266 [TBL] [Abstract][Full Text] [Related]
14. Sodium transporter abundance profiling in kidney: effect of spironolactone. Nielsen J; Kwon TH; Masilamani S; Beutler K; Hager H; Nielsen S; Knepper MA Am J Physiol Renal Physiol; 2002 Nov; 283(5):F923-33. PubMed ID: 12372767 [TBL] [Abstract][Full Text] [Related]
15. Vasopressin-stimulated CFTR Cl- currents are increased in the renal collecting duct cells of a mouse model of Liddle's syndrome. Chang CT; Bens M; Hummler E; Boulkroun S; Schild L; Teulon J; Rossier BC; Vandewalle A J Physiol; 2005 Jan; 562(Pt 1):271-84. PubMed ID: 15513933 [TBL] [Abstract][Full Text] [Related]
16. Developmental expression of sodium entry pathways in rat nephron. Schmitt R; Ellison DH; Farman N; Rossier BC; Reilly RF; Reeves WB; Oberbäumer I; Tapp R; Bachmann S Am J Physiol; 1999 Mar; 276(3):F367-81. PubMed ID: 10070160 [TBL] [Abstract][Full Text] [Related]
17. Increased expression of ENaC subunits and increased apical targeting of AQP2 in the kidneys of spontaneously hypertensive rats. Kim SW; Wang W; Kwon TH; Knepper MA; Frøkiaer J; Nielsen S Am J Physiol Renal Physiol; 2005 Nov; 289(5):F957-68. PubMed ID: 15956775 [TBL] [Abstract][Full Text] [Related]
18. Altered expression of renal AQPs and Na(+) transporters in rats with lithium-induced NDI. Kwon TH; Laursen UH; Marples D; Maunsbach AB; Knepper MA; Frokiaer J; Nielsen S Am J Physiol Renal Physiol; 2000 Sep; 279(3):F552-64. PubMed ID: 10966935 [TBL] [Abstract][Full Text] [Related]
19. Dysregulation of renal salt and water transport proteins in diabetic Zucker rats. Bickel CA; Knepper MA; Verbalis JG; Ecelbarger CA Kidney Int; 2002 Jun; 61(6):2099-110. PubMed ID: 12028450 [TBL] [Abstract][Full Text] [Related]
20. The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. Leviel F; Hübner CA; Houillier P; Morla L; El Moghrabi S; Brideau G; Hassan H; Parker MD; Kurth I; Kougioumtzes A; Sinning A; Pech V; Riemondy KA; Miller RL; Hummler E; Shull GE; Aronson PS; Doucet A; Wall SM; Chambrey R; Eladari D J Clin Invest; 2010 May; 120(5):1627-35. PubMed ID: 20389022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]