BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 16672366)

  • 1. Birth of a chimeric primate gene by capture of the transposase gene from a mobile element.
    Cordaux R; Udit S; Batzer MA; Feschotte C
    Proc Natl Acad Sci U S A; 2006 May; 103(21):8101-6. PubMed ID: 16672366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends.
    Miskey C; Papp B; Mátés L; Sinzelle L; Keller H; Izsvák Z; Ivics Z
    Mol Cell Biol; 2007 Jun; 27(12):4589-600. PubMed ID: 17403897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular evolution of an ancient mariner transposon, Hsmar1, in the human genome.
    Robertson HM; Zumpano KL
    Gene; 1997 Dec; 205(1-2):203-17. PubMed ID: 9461395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and genome-wide analyses suggest that transposon-derived protein SETMAR alters transcription and splicing.
    Chen Q; Bates AM; Hanquier JN; Simpson E; Rusch DB; Podicheti R; Liu Y; Wek RC; Cornett EM; Georgiadis MM
    J Biol Chem; 2022 May; 298(5):101894. PubMed ID: 35378129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A family of Tc1-like transposons from the genomes of fishes and frogs: evidence for horizontal transmission.
    Leaver MJ
    Gene; 2001 Jun; 271(2):203-14. PubMed ID: 11418241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zisupton--a novel superfamily of DNA transposable elements recently active in fish.
    Böhne A; Zhou Q; Darras A; Schmidt C; Schartl M; Galiana-Arnoux D; Volff JN
    Mol Biol Evol; 2012 Feb; 29(2):631-45. PubMed ID: 21873630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase.
    Liu D; Bischerour J; Siddique A; Buisine N; Bigot Y; Chalmers R
    Mol Cell Biol; 2007 Feb; 27(3):1125-32. PubMed ID: 17130240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization of and selenomethionine phasing strategy for a SETMAR-DNA complex.
    Chen Q; Georgiadis M
    Acta Crystallogr F Struct Biol Commun; 2016 Sep; 72(Pt 9):713-9. PubMed ID: 27599863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and evolution of the hAT transposon superfamily.
    Rubin E; Lithwick G; Levy AA
    Genetics; 2001 Jul; 158(3):949-57. PubMed ID: 11454746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the human Hsmar1-derived transposase domain in the DNA repair enzyme Metnase.
    Goodwin KD; He H; Imasaki T; Lee SH; Georgiadis MM
    Biochemistry; 2010 Jul; 49(27):5705-13. PubMed ID: 20521842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PIF-like transposons are common in drosophila and have been repeatedly domesticated to generate new host genes.
    Casola C; Lawing AM; Betrán E; Feschotte C
    Mol Biol Evol; 2007 Aug; 24(8):1872-88. PubMed ID: 17556756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide mapping of binding sites of the transposase-derived SETMAR protein in the human genome.
    Miskei M; Horváth A; Viola L; Varga L; Nagy É; Feró O; Karányi Z; Roszik J; Miskey C; Ivics Z; Székvölgyi L
    Comput Struct Biotechnol J; 2021; 19():4032-4041. PubMed ID: 34377368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metnase/SETMAR: a domesticated primate transposase that enhances DNA repair, replication, and decatenation.
    Shaheen M; Williamson E; Nickoloff J; Lee SH; Hromas R
    Genetica; 2010 May; 138(5):559-66. PubMed ID: 20309721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a Tc1-like transposable element in zebrafish (Danio rerio).
    Izsvák Z; Ivics Z; Hackett PB
    Mol Gen Genet; 1995 May; 247(3):312-22. PubMed ID: 7770036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, Activity, and Function of SETMAR Protein Lysine Methyltransferase.
    Tellier M
    Life (Basel); 2021 Dec; 11(12):. PubMed ID: 34947873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon.
    Feschotte C; Mouchès C
    Mol Biol Evol; 2000 May; 17(5):730-7. PubMed ID: 10779533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity, abundance, and evolutionary dynamics of Pong-like transposable elements in Triticeae.
    Markova DN; Mason-Gamer RJ
    Mol Phylogenet Evol; 2015 Dec; 93():318-30. PubMed ID: 26206730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Tc1-like elements with the spliceosomal introns in mollusk genomes.
    Puzakov MV; Puzakova LV; Cheresiz SV
    Mol Genet Genomics; 2020 May; 295(3):621-633. PubMed ID: 31975241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positive selection on transposase genes of insertion sequences in the Crocosphaera watsonii genome.
    Mes TH; Doeleman M
    J Bacteriol; 2006 Oct; 188(20):7176-85. PubMed ID: 17015656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition.
    Butler MG; Chakraborty SA; Lampe DJ
    Genetica; 2006 May; 127(1-3):351-66. PubMed ID: 16850239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.