BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 16672368)

  • 21. Determination of peptide substrate specificity for mu-calpain by a peptide library-based approach: the importance of primed side interactions.
    Cuerrier D; Moldoveanu T; Davies PL
    J Biol Chem; 2005 Dec; 280(49):40632-41. PubMed ID: 16216885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of a kallikrein-like protease from the snake venom: engineering of autocatalytic site in the fusion protein to facilitate protein refolding.
    Hung CC; Chiou SH
    Biochem Biophys Res Commun; 2000 Sep; 275(3):924-30. PubMed ID: 10973823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using peptide libraries to identify optimal cleavage motifs for proteolytic enzymes.
    Turk BE; Cantley LC
    Methods; 2004 Apr; 32(4):398-405. PubMed ID: 15003602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep profiling of protease substrate specificity enabled by dual random and scanned human proteome substrate phage libraries.
    Zhou J; Li S; Leung KK; O'Donovan B; Zou JY; DeRisi JL; Wells JA
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25464-25475. PubMed ID: 32973096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of two caspase activities simultaneously in living cells by a novel dual FRET fluorescent indicator probe.
    Wu X; Simone J; Hewgill D; Siegel R; Lipsky PE; He L
    Cytometry A; 2006 Jun; 69(6):477-86. PubMed ID: 16683263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generation of Highly Specific Proteolytic Biocatalysts by Screening Technologies.
    Bobik TV; Kostin NN; Knorre VD; Gabibov AG; Smirnov IV
    Bull Exp Biol Med; 2018 Jul; 165(3):399-402. PubMed ID: 30003414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate specificity of the integral membrane protease OmpT determined by spatially addressed peptide libraries.
    Dekker N; Cox RC; Kramer RA; Egmond MR
    Biochemistry; 2001 Feb; 40(6):1694-701. PubMed ID: 11327829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Specificity of the medaka enteropeptidase serine protease and its usefulness as a biotechnological tool for fusion-protein cleavage.
    Ogiwara K; Takahashi T
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7021-6. PubMed ID: 17438297
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening.
    Bozóki B; Gazda L; Tóth F; Miczi M; Mótyán JA; Tőzsér J
    Anal Biochem; 2018 Jan; 540-541():52-63. PubMed ID: 29122614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of immobilized bovine enterokinase in repetitive fusion protein cleavage for the production of mucin 1.
    Kubitzki T; Minör D; Mackfeld U; Oldiges M; Noll T; Lütz S
    Biotechnol J; 2009 Nov; 4(11):1610-8. PubMed ID: 19670252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Enteropeptidase and its use for cleavage of chimeric proteins].
    Mikhaĭlova AG; Shibanova ED; Rumsh LD; Antonov VK
    Bioorg Khim; 1994; 20(8-9):883-93. PubMed ID: 7826415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A strategy to profile prime and non-prime proteolytic substrate specificity.
    Petrassi HM; Williams JA; Li J; Tumanut C; Ek J; Nakai T; Masick B; Backes BJ; Harris JL
    Bioorg Med Chem Lett; 2005 Jun; 15(12):3162-6. PubMed ID: 15878267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries.
    Yi L; Gebhard MC; Li Q; Taft JM; Georgiou G; Iverson BL
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7229-34. PubMed ID: 23589865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Positional scanning synthetic combinatorial libraries for substrate profiling.
    Schneider EL; Craik CS
    Methods Mol Biol; 2009; 539():59-78. PubMed ID: 19377970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries.
    Harris JL; Backes BJ; Leonetti F; Mahrus S; Ellman JA; Craik CS
    Proc Natl Acad Sci U S A; 2000 Jul; 97(14):7754-9. PubMed ID: 10869434
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bovine proenteropeptidase is activated by trypsin, and the specificity of enteropeptidase depends on the heavy chain.
    Lu D; Yuan X; Zheng X; Sadler JE
    J Biol Chem; 1997 Dec; 272(50):31293-300. PubMed ID: 9395456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel fluorescent substrates for detection of trypsin activity and inhibitor screening by self-quenching.
    Sato D; Kato T
    Bioorg Med Chem Lett; 2016 Dec; 26(23):5736-5740. PubMed ID: 27810242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enterokinase monolithic bioreactor as an efficient tool for biopharmaceuticals preparation: on-line cleavage of fusion proteins and analytical characterization of released products.
    Tengattini S; Rinaldi F; Piubelli L; Kupfer T; Peters B; Bavaro T; Calleri E; Massolini G; Temporini C
    J Pharm Biomed Anal; 2018 Aug; 157():10-19. PubMed ID: 29754038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of a novel peptide substrate of HSV-1 protease using substrate phage display.
    O'Boyle DR; Pokornowski KA; McCann PJ; Weinheimer SP
    Virology; 1997 Sep; 236(2):338-47. PubMed ID: 9325241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative analysis of fluorescent caspase substrate cleavage in intact cells and identification of novel inhibitors of apoptosis.
    Tawa P; Tam J; Cassady R; Nicholson DW; Xanthoudakis S
    Cell Death Differ; 2001 Jan; 8(1):30-7. PubMed ID: 11313700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.