These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16672449)

  • 1. Pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces and precipitates selenium and tellurium oxyanions.
    Zawadzka AM; Crawford RL; Paszczynski AJ
    Appl Environ Microbiol; 2006 May; 72(5):3119-29. PubMed ID: 16672449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces chromium(VI) and precipitates mercury, cadmium, lead and arsenic.
    Zawadzka AM; Crawford RL; Paszczynski AJ
    Biometals; 2007 Apr; 20(2):145-58. PubMed ID: 16900399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation of the pdt gene cluster of Pseudomonas stutzeri KC involves an AraC/XylS family transcriptional activator (PdtC) and the cognate siderophore pyridine-2,6-bis(thiocarboxylic acid).
    Morales SE; Lewis TA
    Appl Environ Microbiol; 2006 Nov; 72(11):6994-7002. PubMed ID: 16936044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Pseudomonas stutzeri gene cluster encoding the biosynthesis of the CCl4-dechlorination agent pyridine-2,6-bis(thiocarboxylic acid).
    Lewis TA; Cortese MS; Sebat JL; Green TL; Lee CH; Crawford RL
    Environ Microbiol; 2000 Aug; 2(4):407-16. PubMed ID: 11234929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas spp. and the biological activities of the formed complexes.
    Cortese MS; Paszczynski A; Lewis TA; Sebat JL; Borek V; Crawford RL
    Biometals; 2002 Jun; 15(2):103-20. PubMed ID: 12046919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles.
    Zonaro E; Piacenza E; Presentato A; Monti F; Dell'Anna R; Lampis S; Vallini G
    Microb Cell Fact; 2017 Nov; 16(1):215. PubMed ID: 29183326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial properties of pyridine-2,6-dithiocarboxylic acid, a metal chelator produced by Pseudomonas spp.
    Sebat JL; Paszczynski AJ; Cortese MS; Crawford RL
    Appl Environ Microbiol; 2001 Sep; 67(9):3934-42. PubMed ID: 11525988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Se (IV) triggers faster Te (IV) reduction by soil isolates of heterotrophic aerobic bacteria: formation of extracellular SeTe nanospheres.
    Bajaj M; Winter J
    Microb Cell Fact; 2014 Nov; 13():168. PubMed ID: 25425453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioremediation potential of bacteria able to reduce high levels of selenium and tellurium oxyanions.
    Maltman C; Yurkov V
    Arch Microbiol; 2018 Dec; 200(10):1411-1417. PubMed ID: 30039321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of Se(0), Te(0), and Se(0)-Te(0) nanostructures during simultaneous bioreduction of selenite and tellurite in a UASB reactor.
    Wadgaonkar SL; Mal J; Nancharaiah YV; Maheshwari NO; Esposito G; Lens PNL
    Appl Microbiol Biotechnol; 2018 Mar; 102(6):2899-2911. PubMed ID: 29399711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in biofilm and planktonic cell mediated reduction of metalloid oxyanions.
    Harrison JJ; Ceri H; Stremick C; Turner RJ
    FEMS Microbiol Lett; 2004 Jun; 235(2):357-62. PubMed ID: 15183885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon tetrachloride dechlorination by the bacterial transition metal chelator pyridine-2,6-bis(thiocarboxylic acid).
    Lewis TA; Paszczynski A; Gordon-Wylie SW; Jeedigunta S; Lee CH; Crawford RL
    Environ Sci Technol; 2001 Feb; 35(3):552-9. PubMed ID: 11351728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Pseudomonas stutzeri NT-I capable of removing soluble selenium from the aqueous phase under aerobic conditions.
    Kuroda M; Notaguchi E; Sato A; Yoshioka M; Hasegawa A; Kagami T; Narita T; Yamashita M; Sei K; Soda S; Ike M
    J Biosci Bioeng; 2011 Sep; 112(3):259-64. PubMed ID: 21676651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of siderophores of Pseudomonas stutzeri.
    Zawadzka AM; Vandecasteele FP; Crawford RL; Paszczynski AJ
    Can J Microbiol; 2006 Dec; 52(12):1164-76. PubMed ID: 17473886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bacterial response to the chalcogen metalloids Se and Te.
    Zannoni D; Borsetti F; Harrison JJ; Turner RJ
    Adv Microb Physiol; 2008; 53():1-72. PubMed ID: 17707143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selenium recovery from kiln powder of cement manufacturing by chemical leaching and bioreduction.
    Soda S; Hasegawa A; Kuroda M; Hanada A; Yamashita M; Ike M
    Water Sci Technol; 2015; 72(8):1294-300. PubMed ID: 26465298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of tellurium to hepatocellular selenoproteins during incubation with inorganic tellurite: consequences for the activity of selenium-dependent glutathione peroxidase.
    Garberg P; Engman L; Tolmachev V; Lundqvist H; Gerdes RG; Cotgreave IA
    Int J Biochem Cell Biol; 1999 Feb; 31(2):291-301. PubMed ID: 10216961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal formation of selenium and tellurium nanoparticles.
    Liang X; Perez MAM; Nwoko KC; Egbers P; Feldmann J; Csetenyi L; Gadd GM
    Appl Microbiol Biotechnol; 2019 Sep; 103(17):7241-7259. PubMed ID: 31324941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides.
    Moore MD; Kaplan S
    J Bacteriol; 1992 Mar; 174(5):1505-14. PubMed ID: 1537795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary electrophoretic determination of selenocyanate and selenium and tellurium oxyanions in bacterial cultures.
    Pathem BK; Pradenas GA; Castro ME; Vásquez CC; Chasteen TG
    Anal Biochem; 2007 May; 364(2):138-44. PubMed ID: 17407759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.