These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16672539)

  • 1. Improvement of an unusual twin-arginine transporter leader peptide by a codon-based randomization approach.
    Monroy-Lagos O; Soberon X; Gaytan P; Osuna J
    Appl Environ Microbiol; 2006 May; 72(5):3797-801. PubMed ID: 16672539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat translocation machinery.
    Ignatova Z; Hörnle C; Nurk A; Kasche V
    Biochem Biophys Res Commun; 2002 Feb; 291(1):146-9. PubMed ID: 11829474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone.
    Buchanan G; Maillard J; Nabuurs SB; Richardson DJ; Palmer T; Sargent F
    FEBS Lett; 2008 Dec; 582(29):3979-84. PubMed ID: 19013157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved activity and pH stability of E. coli ATCC 11105 penicillin acylase by error-prone PCR.
    Balci H; Ozturk MT; Pijning T; Ozturk SI; Gumusel F
    Appl Microbiol Biotechnol; 2014 May; 98(10):4467-77. PubMed ID: 24389703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli tatC mutations that suppress defective twin-arginine transporter signal peptides.
    Strauch EM; Georgiou G
    J Mol Biol; 2007 Nov; 374(2):283-91. PubMed ID: 17936785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal Peptide Hydrophobicity Modulates Interaction with the Twin-Arginine Translocase.
    Huang Q; Palmer T
    mBio; 2017 Aug; 8(4):. PubMed ID: 28765221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of residues in DmsD for twin-arginine leader peptide binding, defined through random and bioinformatics-directed mutagenesis.
    Chan CS; Winstone TM; Chang L; Stevens CM; Workentine ML; Li H; Wei Y; Ondrechen MJ; Paetzel M; Turner RJ
    Biochemistry; 2008 Mar; 47(9):2749-59. PubMed ID: 18247574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of site-directed mutations on processing and activities of penicillin G acylase from Escherichia coli ATCC 11105.
    Choi KS; Kim JA; Kang HS
    J Bacteriol; 1992 Oct; 174(19):6270-6. PubMed ID: 1400178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous production of Escherichia coli penicillin G acylase in Pseudomonas aeruginosa.
    Krzeslak J; Braun P; Voulhoux R; Cool RH; Quax WJ
    J Biotechnol; 2009 Jul; 142(3-4):250-8. PubMed ID: 19481123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel GFP expression using a short N-terminal polypeptide through the defined twin-arginine translocation (Tat) pathway.
    Lee SJ; Han YH; Kim YO; Nam BH; Kong HJ
    Mol Cells; 2011 Oct; 32(4):349-58. PubMed ID: 22038594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New approach to achieve high-level secretory expression of heterologous proteins by using Tat signal peptide.
    Li YD; Zhou Z; Lv LX; Hou XP; Li YQ
    Protein Pept Lett; 2009; 16(6):706-10. PubMed ID: 19519532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal peptides for recombinant protein secretion in bacterial expression systems.
    Freudl R
    Microb Cell Fact; 2018 Mar; 17(1):52. PubMed ID: 29598818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The PaaX repressor, a link between penicillin G acylase and the phenylacetyl-coenzyme A catabolon of Escherichia coli W.
    Galán B; García JL; Prieto MA
    J Bacteriol; 2004 Apr; 186(7):2215-20. PubMed ID: 15028709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the diastereoselectivity of penicillin G acylase for ampicillin synthesis from racemic substrates.
    Deaguero AL; Blum JK; Bommarius AS
    Protein Eng Des Sel; 2012 Mar; 25(3):135-44. PubMed ID: 22271751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remnant signal peptides on non-exported enzymes: implications for the evolution of prokaryotic respiratory chains.
    Ize B; Coulthurst SJ; Hatzixanthis K; Caldelari I; Buchanan G; Barclay EC; Richardson DJ; Palmer T; Sargent F
    Microbiology (Reading); 2009 Dec; 155(Pt 12):3992-4004. PubMed ID: 19778964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130.
    Li Y; Chen J; Jiang W; Mao X; Zhao G; Wang E
    Eur J Biochem; 1999 Jun; 262(3):713-9. PubMed ID: 10411632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif.
    Buchanan G; Sargent F; Berks BC; Palmer T
    Arch Microbiol; 2001 Dec; 177(1):107-12. PubMed ID: 11797051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of the exclusive low-temperature synthesis of an enzyme in E. coli: penicillin acylase.
    Keilmann C; Wanner G; Böck A
    Biol Chem Hoppe Seyler; 1993 Oct; 374(10):983-92. PubMed ID: 7507683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein transport by the bacterial Tat pathway.
    Patel R; Smith SM; Robinson C
    Biochim Biophys Acta; 2014 Aug; 1843(8):1620-8. PubMed ID: 24583120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of amino acid changes in the signal peptide on the secretion of the Tat-dependent xylanase C from Streptomyces lividans.
    Li H; Faury D; Morosoli R
    FEMS Microbiol Lett; 2006 Feb; 255(2):268-74. PubMed ID: 16448505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.