BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16672771)

  • 41. The effect of curcumin on corneal neovascularization in rabbit eyes.
    Kim JS; Choi JS; Chung SK
    Curr Eye Res; 2010 Apr; 35(4):274-80. PubMed ID: 20373893
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [A synthetic peptide selected by bioinformatics inhibits mouse corneal neovascularization].
    Zhao H; Yi ZF; Hu HH; Xu X
    Zhonghua Yan Ke Za Zhi; 2007 Feb; 43(2):151-7. PubMed ID: 17459247
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental corneal neovascularization by basic fibroblast growth factor incorporated into gelatin hydrogel.
    Yang CF; Yasukawa T; Kimura H; Miyamoto H; Honda Y; Tabata Y; Ikada Y; Ogura Y
    Ophthalmic Res; 2000; 32(1):19-24. PubMed ID: 10657751
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibitory effect of triamcinolone acetonide on corneal neovascularization.
    Murata M; Shimizu S; Horiuchi S; Taira M
    Graefes Arch Clin Exp Ophthalmol; 2006 Feb; 244(2):205-9. PubMed ID: 16044325
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hepatocyte growth factor stimulated angiogenesis without inflammation: differential actions between hepatocyte growth factor, vascular endothelial growth factor and basic fibroblast growth factor.
    Kaga T; Kawano H; Sakaguchi M; Nakazawa T; Taniyama Y; Morishita R
    Vascul Pharmacol; 2012 Aug; 57(1):3-9. PubMed ID: 22361334
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of vascular endothelial growth factor (VEGF) is sufficient to completely restore barrier malfunction induced by growth factors in microvascular retinal endothelial cells.
    Deissler HL; Deissler H; Lang GE
    Br J Ophthalmol; 2011 Aug; 95(8):1151-6. PubMed ID: 21273213
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modulating the hypoxia-inducible factor signaling pathway as a therapeutic modality to regulate retinal angiogenesis.
    DeNiro M; Alsmadi O; Al-Mohanna F
    Exp Eye Res; 2009 Nov; 89(5):700-17. PubMed ID: 19580810
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anti-flt1 peptide, a vascular endothelial growth factor receptor 1-specific hexapeptide, inhibits tumor growth and metastasis.
    Bae DG; Kim TD; Li G; Yoon WH; Chae CB
    Clin Cancer Res; 2005 Apr; 11(7):2651-61. PubMed ID: 15814646
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Roles of cyclooxygenase-2 in microvascular endothelial cell proliferation induced by basic fibroblast growth factor.
    Qian RZ; Yue F; Zhang GP; Hou LK; Wang XH; Jin HM
    Chin Med J (Engl); 2008 Dec; 121(24):2599-603. PubMed ID: 19187602
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The inhibitory effect of thalidomide analogue on corneal neovascularization in rabbits.
    Lee YK; Chung SK
    Cornea; 2013 Aug; 32(8):1142-8. PubMed ID: 23739149
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibition of lymphangiogenesis in vitro and in vivo by the multikinase inhibitor nintedanib.
    Lin T; Gong L
    Drug Des Devel Ther; 2017; 11():1147-1158. PubMed ID: 28435226
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Corneal neovascularization suppressed by TIMP2 released from human amniotic membranes.
    Ma X; Li J
    Yan Ke Xue Bao; 2005 Mar; 21(1):56-61. PubMed ID: 17162918
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recombinant kringle 1-3 of plasminogen inhibits rabbit corneal angiogenesis induced by angiogenin.
    Shin SH; Kim JC; Chang SI; Lee H; Chung SI
    Cornea; 2000 Mar; 19(2):212-7. PubMed ID: 10746455
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anti-angiogenic effect of hexahydrocurcumin in rat corneal neovascularization.
    Kuo CN; Chen CH; Chen SN; Huang JC; Lai LJ; Lai CH; Hung CH; Lee CH; Chen CY
    Int Ophthalmol; 2018 Apr; 38(2):747-756. PubMed ID: 28393322
    [TBL] [Abstract][Full Text] [Related]  

  • 55. VEGF Trap(R1R2) suppresses experimental corneal angiogenesis.
    Oliveira HB; Sakimoto T; Javier JA; Azar DT; Wiegand SJ; Jain S; Chang JH
    Eur J Ophthalmol; 2010; 20(1):48-54. PubMed ID: 19882518
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Involvement of cysteine proteases in bFGF-induced angiogenesis in guinea pig and rat cornea.
    Tamada Y; Fukiage C; Boyle DL; Azuma M; Shearer TR
    J Ocul Pharmacol Ther; 2000 Jun; 16(3):271-83. PubMed ID: 10872924
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Suramab, a novel antiangiogenic agent, reduces tumor growth and corneal neovascularization.
    Lopez ES; Rizzo MM; Croxatto JO; Mazzolini G; Gallo JE
    Cancer Chemother Pharmacol; 2011 Mar; 67(3):723-8. PubMed ID: 20857116
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantification of angiogenesis due to basic fibroblast growth factor in a modified rabbit corneal model.
    Gaudric A; N'guyen T; Moenner M; Glacet-Bernard A; Barritault D
    Ophthalmic Res; 1992; 24(3):181-8. PubMed ID: 1407961
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A peptide derived from type 1 thrombospondin repeat-containing protein WISP-1 inhibits corneal and choroidal neovascularization.
    Cano Mdel V; Karagiannis ED; Soliman M; Bakir B; Zhuang W; Popel AS; Gehlbach PL
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3840-5. PubMed ID: 19279315
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibition of experimental angiogenesis of cornea by somatostatin.
    Wu PC; Liu CC; Chen CH; Kou HK; Shen SC; Lu CY; Chou WY; Sung MT; Yang LC
    Graefes Arch Clin Exp Ophthalmol; 2003 Jan; 241(1):63-9. PubMed ID: 12545294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.