BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16672796)

  • 1. Influence of dynamic compression on directional hearing in the horizontal plane.
    Musa-Shufani S; Walger M; von Wedel H; Meister H
    Ear Hear; 2006 Jun; 27(3):279-85. PubMed ID: 16672796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaural time and level difference thresholds for acoustically presented signals in post-lingually deafened adults fitted with bilateral cochlear implants using CIS+ processing.
    Grantham DW; Ashmead DH; Ricketts TA; Haynes DS; Labadie RF
    Ear Hear; 2008 Jan; 29(1):33-44. PubMed ID: 18091105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization cues with bilateral cochlear implants.
    Seeber BU; Fastl H
    J Acoust Soc Am; 2008 Feb; 123(2):1030-42. PubMed ID: 18247905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of externalization and spatial cues on the generation of auditory brainstem responses and middle latency responses.
    Junius D; Riedel H; Kollmeier B
    Hear Res; 2007 Mar; 225(1-2):91-104. PubMed ID: 17270375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity to interaural level and envelope time differences of two bilateral cochlear implant listeners using clinical sound processors.
    Laback B; Pok SM; Baumgartner WD; Deutsch WA; Schmid K
    Ear Hear; 2004 Oct; 25(5):488-500. PubMed ID: 15599195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques.
    Palomäki KJ; Tiitinen H; Mäkinen V; May PJ; Alku P
    Brain Res Cogn Brain Res; 2005 Aug; 24(3):364-79. PubMed ID: 16099350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplification of interaural level differences improves sound localization in acoustic simulations of bimodal hearing.
    Francart T; Van den Bogaert T; Moonen M; Wouters J
    J Acoust Soc Am; 2009 Dec; 126(6):3209-13. PubMed ID: 20000934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perception of across-frequency interaural level differences.
    Francart T; Wouters J
    J Acoust Soc Am; 2007 Nov; 122(5):2826-31. PubMed ID: 18189572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of interaural level differences improves sound localization in bimodal hearing.
    Francart T; Lenssen A; Wouters J
    J Acoust Soc Am; 2011 Nov; 130(5):2817-26. PubMed ID: 22087910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horizontal-plane localization of noise and speech signals by postlingually deafened adults fitted with bilateral cochlear implants.
    Grantham DW; Ashmead DH; Ricketts TA; Labadie RF; Haynes DS
    Ear Hear; 2007 Aug; 28(4):524-41. PubMed ID: 17609614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimodal listeners are not sensitive to interaural time differences in unmodulated low-frequency stimuli (L).
    Lenssen A; Francart T; Brokx J; Wouters J
    J Acoust Soc Am; 2011 Jun; 129(6):3457-60. PubMed ID: 21682370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interference and enhancement effects on interaural time discrimination and level discrimination in listeners with normal hearing and those with hearing loss.
    Smith-Olinde L; Besing J; Koehnke J
    Am J Audiol; 2004 Jun; 13(1):80-95. PubMed ID: 15248807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory lateralization in schizophrenia--mismatch negativity and behavioral evidence of a selective impairment in encoding interaural time cues.
    Matthews N; Todd J; Budd TW; Cooper G; Michie PT
    Clin Neurophysiol; 2007 Apr; 118(4):833-44. PubMed ID: 17317304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of bimodal listeners to interaural time differences with modulated single- and multiple-channel stimuli.
    Francart T; Lenssen A; Wouters J
    Audiol Neurootol; 2011; 16(2):82-92. PubMed ID: 20571259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal head related transfer functions for hearing and monaural localization in elevation: a signal processing design perspective.
    Rao KR; Ben-Arie J
    IEEE Trans Biomed Eng; 1996 Nov; 43(11):1093-105. PubMed ID: 9214827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of sound localization mechanisms in the mongolian gerbil is shaped by early acoustic experience.
    Seidl AH; Grothe B
    J Neurophysiol; 2005 Aug; 94(2):1028-36. PubMed ID: 15829592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of multi-channel wide dynamic range compression, noise reduction, and the directional microphone on horizontal localization performance in hearing aid wearers.
    Keidser G; Rohrseitz K; Dillon H; Hamacher V; Carter L; Rass U; Convery E
    Int J Audiol; 2006 Oct; 45(10):563-79. PubMed ID: 17062498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound source localization using hearing aids with microphones placed behind-the-ear, in-the-canal, and in-the-pinna.
    Van den Bogaert T; Carette E; Wouters J
    Int J Audiol; 2011 Mar; 50(3):164-76. PubMed ID: 21208034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of interaural cues and their contribution to the lateralisation of Mongolian gerbils (Meriones unguiculatus).
    Tolnai S; Beutelmann R; Klump GM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 May; 204(5):435-448. PubMed ID: 29476321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-Varying Distortions of Binaural Information by Bilateral Hearing Aids: Effects of Nonlinear Frequency Compression.
    Brown AD; Rodriguez FA; Portnuff CD; Goupell MJ; Tollin DJ
    Trends Hear; 2016 Oct; 20():. PubMed ID: 27698258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.