These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 16673415)
1. RNA interference of sialidase improves glycoprotein sialic acid content consistency. Ngantung FA; Miller PG; Brushett FR; Tang GL; Wang DI Biotechnol Bioeng; 2006 Sep; 95(1):106-19. PubMed ID: 16673415 [TBL] [Abstract][Full Text] [Related]
2. Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant DNase in batch culture with increased sialic acid. Ferrari J; Gunson J; Lofgren J; Krummen L; Warner TG Biotechnol Bioeng; 1998 Dec; 60(5):589-95. PubMed ID: 10099467 [TBL] [Abstract][Full Text] [Related]
3. Enhancing glycoprotein sialylation by targeted gene silencing in mammalian cells. Zhang M; Koskie K; Ross JS; Kayser KJ; Caple MV Biotechnol Bioeng; 2010 Apr; 105(6):1094-105. PubMed ID: 20014139 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of cold-inducible RNA-binding protein increases interferon-gamma production in Chinese-hamster ovary cells. Tan HK; Lee MM; Yap MG; Wang DI Biotechnol Appl Biochem; 2008 Apr; 49(Pt 4):247-57. PubMed ID: 17608629 [TBL] [Abstract][Full Text] [Related]
5. Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Wong NS; Yap MG; Wang DI Biotechnol Bioeng; 2006 Apr; 93(5):1005-16. PubMed ID: 16432895 [TBL] [Abstract][Full Text] [Related]
6. Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Gramer MJ; Goochee CF Biotechnol Prog; 1993; 9(4):366-73. PubMed ID: 7763907 [TBL] [Abstract][Full Text] [Related]
7. Enhanced sialylation of recombinant erythropoietin in genetically engineered Chinese-hamster ovary cells. Jeong YT; Choi O; Son YD; Park SY; Kim JH Biotechnol Appl Biochem; 2009 Apr; 52(Pt 4):283-91. PubMed ID: 18590515 [TBL] [Abstract][Full Text] [Related]
8. Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. Son YD; Jeong YT; Park SY; Kim JH Glycobiology; 2011 Aug; 21(8):1019-28. PubMed ID: 21436238 [TBL] [Abstract][Full Text] [Related]
9. Gene-expression profiles for five key glycosylation genes for galactose-fed CHO cells expressing recombinant IL-4/13 cytokine trap. Clark KJ; Griffiths J; Bailey KM; Harcum SW Biotechnol Bioeng; 2005 Jun; 90(5):568-77. PubMed ID: 15818560 [TBL] [Abstract][Full Text] [Related]
10. Involvement of sialic acid in the regulation of γ--aminobutyric acid uptake activity of γ-aminobutyric acid transporter 1. Hu J; Fei J; Reutter W; Fan H Glycobiology; 2011 Mar; 21(3):329-39. PubMed ID: 21045010 [TBL] [Abstract][Full Text] [Related]
11. Sialidase activity in culture fluid of Chinese hamster ovary cells during batch culture and its effects on recombinant human antithrombin III integrity. Munzert E; Mthing J; Büntemeyer H; Lehmann J Biotechnol Prog; 1996; 12(4):559-63. PubMed ID: 8987482 [TBL] [Abstract][Full Text] [Related]
12. [Extracellular sialidase degrades sialic acid in recombinant human erythropoietin produced by an industrial Chinese hamster ovary cell strain]. Liu Y; Zhou X; Liu H; Song Z; Zhang Y Sheng Wu Gong Cheng Xue Bao; 2012 Dec; 28(12):1492-9. PubMed ID: 23593873 [TBL] [Abstract][Full Text] [Related]
13. Glycoengineering the N-acyl side chain of sialic acid of human erythropoietin affects its resistance to sialidase. Werner A; Horstkorte R; Glanz D; Biskup K; Blanchard V; Berger M; Bork K Biol Chem; 2012 Aug; 393(8):777-83. PubMed ID: 22944680 [TBL] [Abstract][Full Text] [Related]
14. Removal of sialic acid from a glycoprotein in CHO cell culture supernatant by action of an extracellular CHO cell sialidase. Gramer MJ; Goochee CF; Chock VY; Brousseau DT; Sliwkowski MB Biotechnology (N Y); 1995 Jul; 13(7):692-8. PubMed ID: 9634806 [TBL] [Abstract][Full Text] [Related]
15. A high-throughput method for quantification of glycoprotein sialylation. Markely LR; Ong BT; Hoi KM; Teo G; Lu MY; Wang DI Anal Biochem; 2010 Dec; 407(1):128-33. PubMed ID: 20692221 [TBL] [Abstract][Full Text] [Related]
16. Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells. Mohan C; Kim YG; Koo J; Lee GM Biotechnol J; 2008 May; 3(5):624-30. PubMed ID: 18293320 [TBL] [Abstract][Full Text] [Related]
17. Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Weikert S; Papac D; Briggs J; Cowfer D; Tom S; Gawlitzek M; Lofgren J; Mehta S; Chisholm V; Modi N; Eppler S; Carroll K; Chamow S; Peers D; Berman P; Krummen L Nat Biotechnol; 1999 Nov; 17(11):1116-21. PubMed ID: 10545921 [TBL] [Abstract][Full Text] [Related]
18. Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Mori K; Kuni-Kamochi R; Yamane-Ohnuki N; Wakitani M; Yamano K; Imai H; Kanda Y; Niwa R; Iida S; Uchida K; Shitara K; Satoh M Biotechnol Bioeng; 2004 Dec; 88(7):901-8. PubMed ID: 15515168 [TBL] [Abstract][Full Text] [Related]
19. Sialylation enhancement of CTLA4-Ig fusion protein in Chinese hamster ovary cells by dexamethasone. Jing Y; Qian Y; Li ZJ Biotechnol Bioeng; 2010 Oct; 107(3):488-96. PubMed ID: 20521303 [TBL] [Abstract][Full Text] [Related]
20. Changes in the quality of antibodies produced by Chinese hamster ovary cells during the death phase of cell culture. Kaneko Y; Sato R; Aoyagi H J Biosci Bioeng; 2010 Mar; 109(3):281-7. PubMed ID: 20159578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]