These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 1667363)
1. Na+ and K+ transport alterations in hypertension. Zicha J; Bin Talib HK; Duhm J Physiol Res; 1991; 40(6):555-76. PubMed ID: 1667363 [No Abstract] [Full Text] [Related]
2. The polymorphism of red cell Na and K transport in essential hypertension: findings, controversies, and perspectives. Canessa M Prog Clin Biol Res; 1984; 159():293-315. PubMed ID: 6382325 [No Abstract] [Full Text] [Related]
3. Cation fluxes and (Na+ + K+)-activated ATPase activity in erythrocytes of patients with essential hypertension. Swarts HG; Bonting SL; De Pont JJ; Schuurmans Stekhoven FM; Thien TA; Van't Laar A Clin Exp Hypertens (1978); 1981; 3(4):831-49. PubMed ID: 6271511 [TBL] [Abstract][Full Text] [Related]
4. Hypertension, obesity, and sodium-potassium transport. Van Winkle LJ N Engl J Med; 1981 Feb; 304(6):358-9. PubMed ID: 6255333 [No Abstract] [Full Text] [Related]
5. Three red cell sodium transport systems in hypertensive and normotensive Utah adults. Smith JB; Ash KO; Hunt SC; Hentschel WM; Sprowell W; Dadone MM; Williams RR Hypertension; 1984; 6(2 Pt 1):159-66. PubMed ID: 6327514 [TBL] [Abstract][Full Text] [Related]
6. Cellular sodium transport in essential hypertension. Hilton PJ N Engl J Med; 1986 Jan; 314(4):222-9. PubMed ID: 3001524 [No Abstract] [Full Text] [Related]
7. Intracellular sodium concentration and transport in red cells in essential hypertension, hyperthyroidism, pregnancy and hypokalemia. Gless KH; Sütterlin U; Schaz K; Schütz V; Hunstein W Clin Physiol Biochem; 1986; 4(3):199-209. PubMed ID: 3011343 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of Na,K-ATPase activity reduces Babesia gibsoni infection of canine erythrocytes with inherited high K, low Na concentrations. Yamasaki M; Takada A; Yamato O; Maede Y J Parasitol; 2005 Dec; 91(6):1287-92. PubMed ID: 16539007 [TBL] [Abstract][Full Text] [Related]
9. [Activity of the systems of transmembrane transport of Na+ (Na+-K+ ATPase, Na+-K+-Cl cotransport, Na+-Li+ countertransport and passive Na+ diffusion) in essential arterial hypertension]. de la Sierra A; Coca A; Aguilera MT; Vives JL; Ingelmo M; Urbano-Márquez A Med Clin (Barc); 1988 Feb; 90(5):186-9. PubMed ID: 2832663 [No Abstract] [Full Text] [Related]
10. [Potassium ion transport in the erythrocytes of the frog Rana ridibunda]. Agalakova NI; Lapin AV; Gusev GP Zh Evol Biokhim Fiziol; 1995; 31(2):161-9. PubMed ID: 7483911 [TBL] [Abstract][Full Text] [Related]
11. Alteration in ouabain-sensitive sodium potassium pump of erythrocytes during pregnancy induced hypertension: a kinetic study. Kaur G; Kapoor N; Mohan P; Sri Nageswari K; Singh MJ; Prasad R J Biochem Mol Biol Biophys; 2002 Jun; 6(3):163-6. PubMed ID: 12186749 [TBL] [Abstract][Full Text] [Related]
12. Methodological assessment of assays for intracellular concentration and transmembrane fluxes of sodium and potassium in erythrocytes of man. Lijnen P; Groeseneken D; Laermans M; Lommelen G; Piccart Y; Amery A Methods Find Exp Clin Pharmacol; 1984 Jun; 6(6):293-301. PubMed ID: 6087051 [TBL] [Abstract][Full Text] [Related]
13. Abnormal relationship between dietary sodium intake and red cell sodium transport in salt-sensitive patients with essential hypertension. Saito K; Furuta Y; Sano H; Okishio T; Fukuzaki H Clin Exp Hypertens A; 1985; 7(9):1217-32. PubMed ID: 3000655 [TBL] [Abstract][Full Text] [Related]
14. The effect of cyclic nucleotides and icosanoids on Na+ and K+ transport in human red cells. Garay R; Nazaret C; Diez J; Dagher G; Hannaert P; Braquet P Biomed Biochim Acta; 1983; 42(11-12):S53-7. PubMed ID: 6202301 [TBL] [Abstract][Full Text] [Related]
15. Intracellular sodium, potassium and magnesium concentration, ouabain-sensitive 86rubidium-uptake and sodium-efflux and Na+, K+-cotransport activity in erythrocytes of normal male subjects studied on two occasions. Lijnen P; Hespel P; Lommelen G; Laermans M; M'Buyamba-Kabangu JR; Amery A Methods Find Exp Clin Pharmacol; 1986 Sep; 8(9):525-33. PubMed ID: 3773597 [TBL] [Abstract][Full Text] [Related]
16. Red cell Na+ -K+ transport in various forms of human hypertension. Role of cardiovascular risk factors and plasma potassium. Behr J; Witzgall H; Lorenz R; Weber PC; Duhm J Klin Wochenschr; 1985; 63 Suppl 3():63-5. PubMed ID: 3999648 [TBL] [Abstract][Full Text] [Related]
17. Effect of treatment with hydrochlorothiazide on the red cell Na,K-adenosine triphosphatase in men with hypertension. Quintanilla AP; Finn M; Weffer MI; Del Greco F J Lab Clin Med; 1987 Nov; 110(5):583-7. PubMed ID: 2822824 [TBL] [Abstract][Full Text] [Related]
18. Explaining on request a correlation between membrane Na,K-ATPase and K+ content in erythrocytes and other findings in the preceding paper. Ling GN Physiol Chem Phys Med NMR; 1998; 30(1):89-97. PubMed ID: 9807237 [TBL] [Abstract][Full Text] [Related]
19. Investigations on the Na+, K+-pump in erythrocytes of patients with renal hypertension. Brod J; Schaeffer J; Hengstenberg JH; Kleinschmidt TG Clin Sci (Lond); 1984 Mar; 66(3):351-5. PubMed ID: 6692665 [TBL] [Abstract][Full Text] [Related]