BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 16674135)

  • 1. Accurate potential energy surface and quantum reaction rate calculations for the H+CH4-->H2+CH3 reaction.
    Wu T; Werner HJ; Manthe U
    J Chem Phys; 2006 Apr; 124(16):164307. PubMed ID: 16674135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermochemistry and accurate quantum reaction rate calculations for H2/HD/D2 + CH3.
    Nyman G; van Harrevelt R; Manthe U
    J Phys Chem A; 2007 Oct; 111(41):10331-7. PubMed ID: 17547382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum dynamics of the H+CH4-->H2+CH3 reaction in curvilinear coordinates: full-dimensional and reduced dimensional calculations of reaction rates.
    Schiffel G; Manthe U
    J Chem Phys; 2010 Feb; 132(8):084103. PubMed ID: 20192286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate quantum calculations of the reaction rates for H/D+CH4.
    van Harrevelt R; Nyman G; Manthe U
    J Chem Phys; 2007 Feb; 126(8):084303. PubMed ID: 17343444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-dimensional quantum reaction rate calculations for H + CH(4) → H(2) + CH(3) on a recent potential energy surface.
    Schiffel G; Manthe U; Nyman G
    J Phys Chem A; 2010 Sep; 114(36):9617-22. PubMed ID: 20518477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A transition state wave packet study of the H+CH4 reaction.
    Zhang L; Lu Y; Lee SY; Zhang DH
    J Chem Phys; 2007 Dec; 127(23):234313. PubMed ID: 18154388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Path integral calculation of thermal rate constants within the quantum instanton approximation: application to the H + CH4 --> H2 + CH3 hydrogen abstraction reaction in full Cartesian space.
    Zhao Y; Yamamoto T; Miller WH
    J Chem Phys; 2004 Feb; 120(7):3100-7. PubMed ID: 15268462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of quantum dynamics and quantum transition state theory estimates of the H + CH4 reaction rate.
    Andersson S; Nyman G; Arnaldsson A; Manthe U; Jónsson H
    J Phys Chem A; 2009 Apr; 113(16):4468-78. PubMed ID: 19275158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio potential energy surface and quantum dynamics for the H + CH4 → H2 + CH3 reaction.
    Zhou Y; Fu B; Wang C; Collins MA; Zhang DH
    J Chem Phys; 2011 Feb; 134(6):064323. PubMed ID: 21322696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimolecular reaction rates from ring polymer molecular dynamics: application to H + CH4 → H2 + CH3.
    Suleimanov YV; Collepardo-Guevara R; Manolopoulos DE
    J Chem Phys; 2011 Jan; 134(4):044131. PubMed ID: 21280711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced dimensionality quantum dynamics of CH3 + CH4 --> CH4 + CH3: symmetric hydrogen exchange on an Ab initio potential.
    Remmert SM; Banks ST; Clary DC
    J Phys Chem A; 2009 Apr; 113(16):4255-64. PubMed ID: 19254017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotational excitations in para-H2+para-H2 collisions: full- and reduced-dimensional quantum wave packet studies comparing different potential energy surfaces.
    Otto F; Gatti F; Meyer HD
    J Chem Phys; 2008 Feb; 128(6):064305. PubMed ID: 18282036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 → H2 + CH3 rate constants for different potentials.
    Welsch R; Manthe U
    J Chem Phys; 2012 Dec; 137(24):244106. PubMed ID: 23277927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculating initial-state-selected reaction probabilities from thermal flux eigenstates: a transition-state-based approach.
    Huarte-Larrañaga F; Manthe U
    J Chem Phys; 2005 Nov; 123(20):204114. PubMed ID: 16351247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semiclassical nonadiabatic dynamics based on quantum trajectories for the O(3P,1D) + H2 system.
    Garashchuk S; Rassolov VA; Schatz GC
    J Chem Phys; 2006 Jun; 124(24):244307. PubMed ID: 16821977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State-to-state reactive differential cross sections for the H+H2-->H2+H reaction on five different potential energy surfaces employing a new quantum wavepacket computer code: DIFFREALWAVE.
    Hankel M; Smith SC; Allan RJ; Gray SK; Balint-Kurti GG
    J Chem Phys; 2006 Oct; 125(16):164303. PubMed ID: 17092069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined valence bond-molecular mechanics potential-energy surface and direct dynamics study of rate constants and kinetic isotope effects for the H + C2H6 reaction.
    Chakraborty A; Zhao Y; Lin H; Truhlar DG
    J Chem Phys; 2006 Jan; 124(4):044315. PubMed ID: 16460170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growing multiconfigurational potential energy surfaces with applications to X + H2 (X = C,N,O) reactions.
    Netzloff HM; Collins MA; Gordon MS
    J Chem Phys; 2006 Apr; 124(15):154104. PubMed ID: 16674215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiconfiguration time-dependent Hartree method applied to molecular dissociation on surfaces: H2 + Pt(111).
    Crespos C; Meyer HD; Mowrey RC; Kroes GJ
    J Chem Phys; 2006 Feb; 124(7):74706. PubMed ID: 16497069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio and direct quasiclassical-trajectory study of the F+CH4-->HF+CH3 reaction.
    Troya D
    J Chem Phys; 2005 Dec; 123(21):214305. PubMed ID: 16356046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.