These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 16674177)
1. Optical coherence tomography for imaging the vulnerable plaque. Tearney GJ; Jang IK; Bouma BE J Biomed Opt; 2006; 11(2):021002. PubMed ID: 16674177 [TBL] [Abstract][Full Text] [Related]
2. Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. van der Meer FJ; Faber DJ; Baraznji Sassoon DM; Aalders MC; Pasterkamp G; van Leeuwen TG IEEE Trans Med Imaging; 2005 Oct; 24(10):1369-76. PubMed ID: 16229422 [TBL] [Abstract][Full Text] [Related]
3. Inverse scattering for optical coherence tomography. Ralston TS; Marks DL; Carney PS; Boppart SA J Opt Soc Am A Opt Image Sci Vis; 2006 May; 23(5):1027-37. PubMed ID: 16642179 [TBL] [Abstract][Full Text] [Related]
4. Image enhancement for multilayer information retrieval by using full-field optical coherence tomography. Chang S; Cai X; Flueraru C Appl Opt; 2006 Aug; 45(23):5967-75. PubMed ID: 16926885 [TBL] [Abstract][Full Text] [Related]
5. Minimum-phase-function-based processing in frequency-domain optical coherence tomography systems. Ozcan A; Digonnet MJ; Kino GS J Opt Soc Am A Opt Image Sci Vis; 2006 Jul; 23(7):1669-77. PubMed ID: 16783430 [TBL] [Abstract][Full Text] [Related]
6. Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms. Liu B; Harman M; Brezinski ME J Opt Soc Am A Opt Image Sci Vis; 2005 Feb; 22(2):262-71. PubMed ID: 15717555 [TBL] [Abstract][Full Text] [Related]
7. Real-time polarization-sensitive optical coherence tomography data processing with parallel computing. Liu G; Zhang J; Yu L; Xie T; Chen Z Appl Opt; 2009 Nov; 48(32):6365-70. PubMed ID: 19904337 [TBL] [Abstract][Full Text] [Related]
8. Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography. Xu C; Schmitt JM; Carlier SG; Virmani R J Biomed Opt; 2008; 13(3):034003. PubMed ID: 18601548 [TBL] [Abstract][Full Text] [Related]
9. A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography. Wang RK; Ma Z Phys Med Biol; 2006 Jun; 51(12):3231-9. PubMed ID: 16757873 [TBL] [Abstract][Full Text] [Related]
10. Towards multi-directional OCT for speckle noise reduction. Ramrath L; Moreno G; Mueller H; Bonin T; Huettmann G; Schweikard A Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):815-23. PubMed ID: 18979821 [TBL] [Abstract][Full Text] [Related]
11. Semiautomatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images. Wang Z; Kyono H; Bezerra HG; Wang H; Gargesha M; Alraies C; Xu C; Schmitt JM; Wilson DL; Costa MA; Rollins AM J Biomed Opt; 2010; 15(6):061711. PubMed ID: 21198159 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional high-resolution optical coherence tomography (OCT) imaging of human kidney. Li Q; Onozato M; Andrews PM; Paek A; Duttaroy A; Shirmahamoodi B; Jiang J; Cable A; Chen Y Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5741-3. PubMed ID: 19963648 [TBL] [Abstract][Full Text] [Related]
14. Automatic recovery of the optic nervehead geometry in optical coherence tomography. Boyer KL; Herzog A; Roberts C IEEE Trans Med Imaging; 2006 May; 25(5):553-70. PubMed ID: 16689260 [TBL] [Abstract][Full Text] [Related]
15. Signal-to-noise ratio study of full-field fourier-domain optical coherence tomography. Blazkiewicz P; Gourlay M; Tucker JR; Rakic AD; Zvyagin AV Appl Opt; 2005 Dec; 44(36):7722-9. PubMed ID: 16381518 [TBL] [Abstract][Full Text] [Related]