BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 16674182)

  • 1. Laguerre-based method for analysis of time-resolved fluorescence data: application to in-vivo characterization and diagnosis of atherosclerotic lesions.
    Jo JA; Fang Q; Papaioannou T; Baker JD; Dorafshar AH; Reil T; Qiao JH; Fishbein MC; Freischlag JA; Marcu L
    J Biomed Opt; 2006; 11(2):021004. PubMed ID: 16674179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practices, Potential, and Perspectives for Detecting Predisease Using Raman Spectroscopy.
    Oshima Y; Haruki T; Koizumi K; Yonezawa S; Taketani A; Kadowaki M; Saito S
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy.
    Pandey R; Paidi SK; Valdez TA; Zhang C; Spegazzini N; Dasari RR; Barman I
    Acc Chem Res; 2017 Feb; 50(2):264-272. PubMed ID: 28071894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined fiber probe for fluorescence lifetime and Raman spectroscopy.
    Dochow S; Ma D; Latka I; Bocklitz T; Hartl B; Bec J; Fatakdawala H; Marple E; Urmey K; Wachsmann-Hogiu S; Schmitt M; Marcu L; Popp J
    Anal Bioanal Chem; 2015 Nov; 407(27):8291-301. PubMed ID: 26093843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement.
    Kong CR; Barman I; Dingari NC; Kang JW; Galindo L; Dasari RR; Feld MS
    AIP Adv; 2011 Sep; 1(3):32175. PubMed ID: 22125761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectroscopy: a real-time tool for identifying microcalcifications during stereotactic breast core needle biopsies.
    Saha A; Barman I; Dingari NC; McGee S; Volynskaya Z; Galindo LH; Liu W; Plecha D; Klein N; Dasari RR; Fitzmaurice M
    Biomed Opt Express; 2011 Oct; 2(10):2792-803. PubMed ID: 22025985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification model based on Raman spectra of selected morphological and biochemical tissue constituents for identification of atherosclerosis in human coronary arteries.
    Peres MB; Silveira L; Zângaro RA; Pacheco MT; Pasqualucci CA
    Lasers Med Sci; 2011 Sep; 26(5):645-55. PubMed ID: 21468721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis.
    Sun Y; Sun Y; Stephens D; Xie H; Phipps J; Saroufeem R; Southard J; Elson DS; Marcu L
    Opt Express; 2011 Feb; 19(5):3890-901. PubMed ID: 21369214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque.
    Sćepanović OR; Fitzmaurice M; Miller A; Kong CR; Volynskaya Z; Dasari RR; Kramer JR; Feld MS
    J Biomed Opt; 2011; 16(1):011009. PubMed ID: 21280896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of coronary atherosclerotic plaques with superficial proteoglycans and foam cells using real-time intrinsic fluorescence spectroscopy.
    Angheloiu GO; Haka AS; Georgakoudi I; Arendt J; Müller MG; Scepanovic OR; Evanko SP; Wight TN; Mukherjee P; Waldeck DH; Dasari RR; Fitzmaurice M; Kramer JR; Feld MS
    Atherosclerosis; 2011 Mar; 215(1):96-102. PubMed ID: 21193196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy.
    Rajaram N; Aramil TJ; Lee K; Reichenberg JS; Nguyen TH; Tunnell JW
    Appl Opt; 2010 Jan; 49(2):142-52. PubMed ID: 20062500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopy to improve identification of vulnerable plaques in cardiovascular disease.
    Bruggink JL; Meerwaldt R; van Dam GM; Lefrandt JD; Slart RH; Tio RA; Smit AJ; Zeebregts CJ
    Int J Cardiovasc Imaging; 2010 Jan; 26(1):111-9. PubMed ID: 19760516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multimodal spectroscopy system for real-time disease diagnosis.
    Sćepanović OR; Volynskaya Z; Kong CR; Galindo LH; Dasari RR; Feld MS
    Rev Sci Instrum; 2009 Apr; 80(4):043103. PubMed ID: 19405647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans.
    Wachsmann-Hogiu S; Weeks T; Huser T
    Curr Opin Biotechnol; 2009 Feb; 20(1):63-73. PubMed ID: 19268566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catheters: instrumental advancements in biomedical applications of optical fibers.
    de Lima CJ; Moreira LM; Lyon JP; Villaverde AB; Pacheco MT
    Lasers Med Sci; 2009 Jul; 24(4):621-6. PubMed ID: 18780141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical clearing in transcutaneous Raman spectroscopy of murine cortical bone tissue.
    Schulmerich MV; Cole JH; Dooley KA; Morris MD; Kreider JM; Goldstein SA
    J Biomed Opt; 2008; 13(2):021108. PubMed ID: 18465957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of morphological markers of vulnerable atherosclerotic plaque using multimodal spectroscopy.
    Sćepanović OR; Fitzmaurice M; Gardecki JA; Angheloiu GO; Awasthi S; Motz JT; Kramer JR; Dasari RR; Feld MS
    J Biomed Opt; 2006; 11(2):021007. PubMed ID: 16674182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reflection spectroscopy of atherosclerotic plaque.
    Lilledahl MB; Haugen OA; Barkost M; Svaasand LO
    J Biomed Opt; 2006; 11(2):021005. PubMed ID: 16674180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque.
    Motz JT; Fitzmaurice M; Miller A; Gandhi SJ; Haka AS; Galindo LH; Dasari RR; Kramer JR; Feld MS
    J Biomed Opt; 2006; 11(2):021003. PubMed ID: 16674178
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.