BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16674198)

  • 1. Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia.
    Chang SK; Marin N; Follen M; Richards-Kortum R
    J Biomed Opt; 2006; 11(2):024008. PubMed ID: 16674198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based analysis of reflectance and fluorescence spectra for in vivo detection of cervical dysplasia and cancer.
    Redden Weber C; Schwarz RA; Atkinson EN; Cox DD; Macaulay C; Follen M; Richards-Kortum R
    J Biomed Opt; 2008; 13(6):064016. PubMed ID: 19123662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements.
    Chang SK; Arifler D; Drezek R; Follen M; Richards-Kortum R
    J Biomed Opt; 2004; 9(3):511-22. PubMed ID: 15189089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements.
    Arifler D; MacAulay C; Follen M; Richards-Kortum R
    J Biomed Opt; 2006; 11(6):064027. PubMed ID: 17212550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration of FAD as a marker for cervical precancer detection.
    Meena BL; Agarwal A; Pantola C; Pandey K; Pradhan A
    J Biomed Opt; 2019 Mar; 24(3):1-7. PubMed ID: 30903655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications.
    Drezek R; Sokolov K; Utzinger U; Boiko I; Malpica A; Follen M; Richards-Kortum R
    J Biomed Opt; 2001 Oct; 6(4):385-96. PubMed ID: 11728196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation of fluorescence spectra of normal and dysplastic cervical tissues for optimizing excitation/receiving arrangements.
    Chu SC; Chiang HK
    Appl Spectrosc; 2010 Jul; 64(7):708-13. PubMed ID: 20615282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia.
    Drezek R; Brookner C; Pavlova I; Boiko I; Malpica A; Lotan R; Follen M; Richards-Kortum R
    Photochem Photobiol; 2001 Jun; 73(6):636-41. PubMed ID: 11421069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo.
    Ramanujam N; Mitchell MF; Mahadevan A; Thomsen S; Malpica A; Wright T; Atkinson N; Richards-Kortum R
    Lasers Surg Med; 1996; 19(1):46-62. PubMed ID: 8836996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Raman spectra measured in vivo for the detection of cervical dysplasia.
    Robichaux-Viehoever A; Kanter E; Shappell H; Billheimer D; Jones H; Mahadevan-Jansen A
    Appl Spectrosc; 2007 Sep; 61(9):986-93. PubMed ID: 17910796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach.
    Zhu C; Palmer GM; Breslin TM; Harter J; Ramanujam N
    J Biomed Opt; 2008; 13(3):034015. PubMed ID: 18601560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo model to describe depth selective fluorescence spectra of epithelial tissue: applications for diagnosis of oral precancer.
    Pavlova I; Weber CR; Schwarz RA; Williams M; El-Naggar A; Gillenwater A; Richards-Kortum R
    J Biomed Opt; 2008; 13(6):064012. PubMed ID: 19123659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser-induced fluorescence spectra at multiple excitation wavelengths.
    Ramanujam N; Mitchell MF; Mahadevan A; Thomsen S; Malpica A; Wright T; Atkinson N; Richards-Kortum R
    Lasers Surg Med; 1996; 19(1):63-74. PubMed ID: 8836997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes.
    Georgakoudi I; Jacobson BC; Müller MG; Sheets EE; Badizadegan K; Carr-Locke DL; Crum CP; Boone CW; Dasari RR; Van Dam J; Feld MS
    Cancer Res; 2002 Feb; 62(3):682-7. PubMed ID: 11830520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-aminolevulinic-acid-based fluorescence spectroscopy and conventional colposcopy for in vivo detection of cervical pre-malignancy.
    Vansevičiūtė R; Venius J; Žukovskaja O; Kanopienė D; Letautienė S; Rotomskis R
    BMC Womens Health; 2015 Apr; 15():35. PubMed ID: 25887444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of probe pressure on cervical fluorescence spectroscopy measurements.
    Nath A; Rivoire K; Chang S; Cox D; Atkinson EN; Follen M; Richards-Kortum R
    J Biomed Opt; 2004; 9(3):523-33. PubMed ID: 15189090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical detection of high-grade cervical intraepithelial neoplasia in vivo: results of a 604-patient study.
    Huh WK; Cestero RM; Garcia FA; Gold MA; Guido RS; McIntyre-Seltman K; Harper DM; Burke L; Sum ST; Flewelling RF; Alvarez RD
    Am J Obstet Gynecol; 2004 May; 190(5):1249-57. PubMed ID: 15167826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of anatomy on spectroscopic detection of cervical dysplasia.
    Mirkovic J; Lau C; McGee S; Yu CC; Nazemi J; Galindo L; Feng V; Darragh T; de Las Morenas A; Crum C; Stier E; Feld M; Badizadegan K
    J Biomed Opt; 2009; 14(4):044021. PubMed ID: 19725732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic fluorescence for cervical precancer detection using polarized light based in-house fabricated portable device.
    Meena BL; Singh P; Sah AN; Pandey K; Agarwal A; Pantola C; Pradhan A
    J Biomed Opt; 2018 Jan; 23(1):1-7. PubMed ID: 29341542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differing self-similarity in light scattering spectra: a potential tool for pre-cancer detection.
    Ghosh S; Soni J; Purwar H; Jagtap J; Pradhan A; Ghosh N; Panigrahi PK
    Opt Express; 2011 Sep; 19(20):19717-30. PubMed ID: 21996914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.