These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 16674286)

  • 1. Engineering three-dimensional pulmonary tissue constructs.
    Mondrinos MJ; Koutzaki S; Jiwanmall E; Li M; Dechadarevian JP; Lelkes PI; Finck CM
    Tissue Eng; 2006 Apr; 12(4):717-28. PubMed ID: 16674286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating the early angiogenesis of tissue engineering constructs in vivo by the use of stem cells cultured in matrigel.
    Schumann P; Lindhorst D; von See C; Menzel N; Kampmann A; Tavassol F; Kokemüller H; Rana M; Gellrich NC; Rücker M
    J Biomed Mater Res A; 2014 Jun; 102(6):1652-62. PubMed ID: 23776037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of growth factor containing Matrigel promotes vascularization of porous PLGA scaffolds.
    Laschke MW; Rücker M; Jensen G; Carvalho C; Mülhaupt R; Gellrich NC; Menger MD
    J Biomed Mater Res A; 2008 May; 85(2):397-407. PubMed ID: 17688245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo pulmonary tissue engineering: contribution of donor-derived endothelial cells to construct vascularization.
    Mondrinos MJ; Koutzaki SH; Poblete HM; Crisanti MC; Lelkes PI; Finck CM
    Tissue Eng Part A; 2008 Mar; 14(3):361-8. PubMed ID: 18333788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assimilating cell sheets and hybrid scaffolds for dermal tissue engineering.
    Ng KW; Tham W; Lim TC; Werner Hutmacher D
    J Biomed Mater Res A; 2005 Nov; 75(2):425-38. PubMed ID: 16106437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.
    Liu X; Won Y; Ma PX
    Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh.
    Chen G; Sato T; Ohgushi H; Ushida T; Tateishi T; Tanaka J
    Biomaterials; 2005 May; 26(15):2559-66. PubMed ID: 15585258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic studies of a self-assembling peptide nanofiber scaffold with other scaffolds.
    Gelain F; Lomander A; Vescovi AL; Zhang S
    J Nanosci Nanotechnol; 2007 Feb; 7(2):424-34. PubMed ID: 17450774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of topography on differentiation fates of matrigel-coated mouse embryonic stem cells cultured on PLGA nanofibrous scaffolds.
    Massumi M; Abasi M; Babaloo H; Terraf P; Safi M; Saeed M; Barzin J; Zandi M; Soleimani M
    Tissue Eng Part A; 2012 Mar; 18(5-6):609-20. PubMed ID: 21981309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colonization and maintenance of murine embryonic stem cells on poly(alpha-hydroxy esters).
    Harrison J; Pattanawong S; Forsythe JS; Gross KA; Nisbet DR; Beh H; Scott TF; Trounson AO; Mollard R
    Biomaterials; 2004 Sep; 25(20):4963-70. PubMed ID: 15109857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications.
    Pattison MA; Wurster S; Webster TJ; Haberstroh KM
    Biomaterials; 2005 May; 26(15):2491-500. PubMed ID: 15585251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun fine-textured scaffolds for heart tissue constructs.
    Zong X; Bien H; Chung CY; Yin L; Fang D; Hsiao BS; Chu B; Entcheva E
    Biomaterials; 2005 Sep; 26(26):5330-8. PubMed ID: 15814131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis.
    Ahmed M; Ramos TA; Damanik F; Quang Le B; Wieringa P; Bennink M; van Blitterswijk C; de Boer J; Moroni L
    Sci Rep; 2015 Oct; 5():14804. PubMed ID: 26445026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration.
    Liao S; Wang W; Uo M; Ohkawa S; Akasaka T; Tamura K; Cui F; Watari F
    Biomaterials; 2005 Dec; 26(36):7564-71. PubMed ID: 16005963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges.
    Lu H; Ko YG; Kawazoe N; Chen G
    Biomed Mater; 2011 Aug; 6(4):045011. PubMed ID: 21747151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of a three-dimensional PLGA sponge containing natural polymers co-cultured with endothelial and mesenchymal stem cells as a tissue engineering scaffold.
    Shim JB; Ankeny RF; Kim H; Nerem RM; Khang G
    Biomed Mater; 2014 Aug; 9(4):045015. PubMed ID: 25065725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.