BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16674306)

  • 1. In vitro ossification and remodeling of mineralized collagen I scaffolds.
    Domaschke H; Gelinsky M; Burmeister B; Fleig R; Hanke T; Reinstorf A; Pompe W; Rösen-Wolff A
    Tissue Eng; 2006 Apr; 12(4):949-58. PubMed ID: 16674306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic collagen scaffolds for human bone cell growth and differentiation.
    Yang XB; Bhatnagar RS; Li S; Oreffo RO
    Tissue Eng; 2004; 10(7-8):1148-59. PubMed ID: 15363171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoblast and osteoclast differentiation in an in vitro three-dimensional model of bone.
    Tortelli F; Pujic N; Liu Y; Laroche N; Vico L; Cancedda R
    Tissue Eng Part A; 2009 Sep; 15(9):2373-83. PubMed ID: 19292676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crosstalk of osteoblast and osteoclast precursors on mineralized collagen--towards an in vitro model for bone remodeling.
    Bernhardt A; Thieme S; Domaschke H; Springer A; Rösen-Wolff A; Gelinsky M
    J Biomed Mater Res A; 2010 Dec; 95(3):848-56. PubMed ID: 20824694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional tissue culture model of bone formation utilizing rotational co-culture of human adult osteoblasts and osteoclasts.
    Clarke MS; Sundaresan A; Vanderburg CR; Banigan MG; Pellis NR
    Acta Biomater; 2013 Aug; 9(8):7908-16. PubMed ID: 23664885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering.
    Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN
    Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of multiple unconfined compression on cellular dense collagen scaffolds for bone tissue engineering.
    Bitar M; Salih V; Brown RA; Nazhat SN
    J Mater Sci Mater Med; 2007 Feb; 18(2):237-44. PubMed ID: 17323154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells.
    Datta N; Holtorf HL; Sikavitsas VI; Jansen JA; Mikos AG
    Biomaterials; 2005 Mar; 26(9):971-7. PubMed ID: 15369685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of pore size on cell adhesion in collagen-GAG scaffolds.
    O'Brien FJ; Harley BA; Yannas IV; Gibson LJ
    Biomaterials; 2005 Feb; 26(4):433-41. PubMed ID: 15275817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymeric scaffolds for bone tissue engineering.
    Liu X; Ma PX
    Ann Biomed Eng; 2004 Mar; 32(3):477-86. PubMed ID: 15095822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.
    Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E
    Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nanostructure of mineralized collagen scaffolds on their physical properties and osteogenic potential.
    Liu Y; Luo D; Liu S; Fu Y; Kou X; Wang X; Sha Y; Gan Y; Zhou Y
    J Biomed Nanotechnol; 2014 Jun; 10(6):1049-60. PubMed ID: 24749399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Experimental study of periosteal osteoblasts coculture with freeze-dried demineralized bone matrix].
    Li YB; Yang ZM; Li XQ
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2002 Jan; 16(1):57-60. PubMed ID: 11826657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic porous scaffolds with high elasticity made from mineralized collagen--an animal study.
    Yokoyama A; Gelinsky M; Kawasaki T; Kohgo T; König U; Pompe W; Watari F
    J Biomed Mater Res B Appl Biomater; 2005 Nov; 75(2):464-72. PubMed ID: 16044430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergy between genetic and tissue engineering: Runx2 overexpression and in vitro construct development enhance in vivo mineralization.
    Byers BA; Guldberg RE; García AJ
    Tissue Eng; 2004; 10(11-12):1757-66. PubMed ID: 15684684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular matrix deposition and scaffold biodegradation in an in vitro three-dimensional model of bone by X-ray computed microtomography.
    Ruggiu A; Tortelli F; Komlev VS; Peyrin F; Cancedda R
    J Tissue Eng Regen Med; 2014 Jul; 8(7):557-65. PubMed ID: 22730262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices.
    Ignatius A; Blessing H; Liedert A; Schmidt C; Neidlinger-Wilke C; Kaspar D; Friemert B; Claes L
    Biomaterials; 2005 Jan; 26(3):311-8. PubMed ID: 15262473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells.
    Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL
    Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds.
    Shea LD; Wang D; Franceschi RT; Mooney DJ
    Tissue Eng; 2000 Dec; 6(6):605-17. PubMed ID: 11103082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.