BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16674743)

  • 1. Biodegradable porous calcium polyphosphate scaffolds for the three-dimensional culture of dental pulp cells.
    Wang FM; Qiu K; Hu T; Wan CX; Zhou XD; Gutmann JL
    Int Endod J; 2006 Jun; 39(6):477-83. PubMed ID: 16674743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Construction of 3D complex of porous beta-tricalcium phosphate/collagen scaffolds and dog periodontal ligament cells].
    Zhong JS; Ouyang XY; Mei F; Deng XL; Cao CF
    Beijing Da Xue Xue Bao Yi Xue Ban; 2007 Oct; 39(5):507-10. PubMed ID: 17940570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-mediated degradation of strontium-doped calcium polyphosphate scaffold for bone tissue engineering.
    Gu Z; Wang H; Li L; Wang Q; Yu X
    Biomed Mater; 2012 Dec; 7(6):065007. PubMed ID: 23186786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous clinoptilolite-nano biphasic calcium phosphate scaffolds loaded with human dental pulp stem cells for load bearing orthopedic applications.
    Alshemary AZ; Pazarçeviren AE; Keskin D; Tezcaner A; Hussain R; Evis Z
    Biomed Mater; 2019 Aug; 14(5):055010. PubMed ID: 31362280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel ceramic bone replacement material CeraBall seeded with human mesenchymal stem cells.
    Douglas T; Liu Q; Humpe A; Wiltfang J; Sivananthan S; Warnke PH
    Clin Oral Implants Res; 2010 Mar; 21(3):262-7. PubMed ID: 19958377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A promising scaffold with excellent cytocompatibility and pro-angiogenesis action for dental tissue engineering: Strontium-doped calcium polyphosphate.
    Qin H; Yang Z; Li L; Yang X; Liu J; Chen X; Yu X
    Dent Mater J; 2016; 35(2):241-9. PubMed ID: 27041014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycol chitin-based thermoresponsive hydrogel scaffold supplemented with enamel matrix derivative promotes odontogenic differentiation of human dental pulp cells.
    Park SJ; Li Z; Hwang IN; Huh KM; Min KS
    J Endod; 2013 Aug; 39(8):1001-7. PubMed ID: 23880267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Preparation and degradation of poly(DL-lactide)/calcium phosphates porous scaffolds].
    Quan D; Liao K; Luo B; Lu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):174-7. PubMed ID: 15143533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds.
    Fielding GA; Bandyopadhyay A; Bose S
    Dent Mater; 2012 Feb; 28(2):113-22. PubMed ID: 22047943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel ceramic bone replacement material Osbone® in a comparative in vitro study with osteoblasts.
    Bernhardt A; Lode A; Peters F; Gelinsky M
    Clin Oral Implants Res; 2011 Jun; 22(6):651-7. PubMed ID: 21044164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo performance of different scaffolds for dental pulp stem cells induced for odontogenic differentiation.
    Atalayin C; Tezel H; Dagci T; Karabay Yavasoglu NU; Oktem G; Kose T
    Braz Oral Res; 2016 Nov; 30(1):e120. PubMed ID: 27901202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds.
    Qiu K; Zhao XJ; Wan CX; Zhao CS; Chen YW
    Biomaterials; 2006 Mar; 27(8):1277-86. PubMed ID: 16143392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells.
    Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y
    J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly epsilon-caprolactone-based composite scaffolds.
    Guarino V; Ambrosio L
    Acta Biomater; 2008 Nov; 4(6):1778-87. PubMed ID: 18571487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells.
    Zheng L; Yang F; Shen H; Hu X; Mochizuki C; Sato M; Wang S; Zhang Y
    Biomaterials; 2011 Oct; 32(29):7053-9. PubMed ID: 21722953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering.
    Guo H; Su J; Wei J; Kong H; Liu C
    Acta Biomater; 2009 Jan; 5(1):268-78. PubMed ID: 18722167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Biodentine™ on the proliferation, migration and adhesion of human dental pulp stem cells.
    Luo Z; Li D; Kohli MR; Yu Q; Kim S; He WX
    J Dent; 2014 Apr; 42(4):490-7. PubMed ID: 24440605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering.
    Atila D; Keskin D; Tezcaner A
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1103-15. PubMed ID: 27612808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dentin barrier test with transfected bovine pulp-derived cells.
    Schmalz G; Schuster U; Thonemann B; Barth M; Esterbauer S
    J Endod; 2001 Feb; 27(2):96-102. PubMed ID: 11491647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.