These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 16674915)

  • 21. A novel mutation L619F in the cardiac Na+ channel SCN5A associated with long-QT syndrome (LQT3): a role for the I-II linker in inactivation gating.
    Wehrens XH; Rossenbacker T; Jongbloed RJ; Gewillig M; Heidbüchel H; Doevendans PA; Vos MA; Wellens HJ; Kass RS
    Hum Mutat; 2003 May; 21(5):552. PubMed ID: 12673799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploration of the pore structure of a peptide-gated Na+ channel.
    Poët M; Tauc M; Lingueglia E; Cance P; Poujeol P; Lazdunski M; Counillon L
    EMBO J; 2001 Oct; 20(20):5595-602. PubMed ID: 11598003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Actions of ATX-II and other gating-modifiers on Na(+) currents in HEK-293 cells expressing WT and DeltaKPQ hNa(V) 1.5 Na(+) channels.
    Spencer CI
    Toxicon; 2009 Jan; 53(1):78-89. PubMed ID: 18996139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method.
    Egan TM; Haines WR; Voigt MM
    J Neurosci; 1998 Apr; 18(7):2350-9. PubMed ID: 9502796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Na+ permeation and block of hERG potassium channels.
    Gang H; Zhang S
    J Gen Physiol; 2006 Jul; 128(1):55-71. PubMed ID: 16769794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localization of the activation gate for small conductance Ca2+-activated K+ channels.
    Bruening-Wright A; Schumacher MA; Adelman JP; Maylie J
    J Neurosci; 2002 Aug; 22(15):6499-506. PubMed ID: 12151529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Properties of the mutant Ser-460-Cys implicate this site in a functionally important region of the type IIa Na(+)/P(i) cotransporter protein.
    Lambert G; Forster IC; Stange G; Biber J; Murer H
    J Gen Physiol; 1999 Nov; 114(5):637-52. PubMed ID: 10532962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How batrachotoxin modifies the sodium channel permeation pathway: computer modeling and site-directed mutagenesis.
    Wang SY; Mitchell J; Tikhonov DB; Zhorov BS; Wang GK
    Mol Pharmacol; 2006 Mar; 69(3):788-95. PubMed ID: 16354762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accessibility of mid-segment domain IV S6 residues of the voltage-gated Na+ channel to methanethiosulfonate reagents.
    Sunami A; Tracey A; Glaaser IW; Lipkind GM; Hanck DA; Fozzard HA
    J Physiol; 2004 Dec; 561(Pt 2):403-13. PubMed ID: 15579536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid and slow voltage-dependent conformational changes in segment IVS6 of voltage-gated Na(+) channels.
    Vedantham V; Cannon SC
    Biophys J; 2000 Jun; 78(6):2943-58. PubMed ID: 10827974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cysteine modification of a putative pore residue in ClC-0: implication for the pore stoichiometry of ClC chloride channels.
    Lin CW; Chen TY
    J Gen Physiol; 2000 Oct; 116(4):535-46. PubMed ID: 11004203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tryptophan scanning of D1S6 and D4S6 C-termini in voltage-gated sodium channels.
    Wang SY; Bonner K; Russell C; Wang GK
    Biophys J; 2003 Aug; 85(2):911-20. PubMed ID: 12885638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of domain 4 in sodium channel slow inactivation.
    Mitrovic N; George AL; Horn R
    J Gen Physiol; 2000 Jun; 115(6):707-18. PubMed ID: 10828245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1.
    Jespersen T; Gavillet B; van Bemmelen MX; Cordonier S; Thomas MA; Staub O; Abriel H
    Biochem Biophys Res Commun; 2006 Oct; 348(4):1455-62. PubMed ID: 16930557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel structural determinants of mu-conotoxin (GIIIB) block in rat skeletal muscle (mu1) Na+ channels.
    Li RA; Ennis IL; Vélez P; Tomaselli GF; Marbán E
    J Biol Chem; 2000 Sep; 275(36):27551-8. PubMed ID: 10859326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compound-specific Na+ channel pore conformational changes induced by local anaesthetics.
    Fukuda K; Nakajima T; Viswanathan PC; Balser JR
    J Physiol; 2005 Apr; 564(Pt 1):21-31. PubMed ID: 15677685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling of single noninactivating Na+ channels: evidence for two open and several fast inactivated states.
    The YK; Fernandes J; Popa MO; Alekov AK; Timmer J; Lerche H
    Biophys J; 2006 May; 90(10):3511-22. PubMed ID: 16513781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for a centrally located gate in the pore of a serotonin-gated ion channel.
    Panicker S; Cruz H; Arrabit C; Slesinger PA
    J Neurosci; 2002 Mar; 22(5):1629-39. PubMed ID: 11880493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cysteine mapping in the ion selectivity and toxin binding region of the cardiac Na+ channel pore.
    Chen S; Hartmann HA; Kirsch GE
    J Membr Biol; 1997 Jan; 155(1):11-25. PubMed ID: 9002421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of verapamil on the action of methanethiosulfonate reagents on human voltage-gated K(v)1.3 channels: implications for the C-type inactivated state.
    Schmid SI; Grissmer S
    Br J Pharmacol; 2011 Jun; 163(3):662-74. PubMed ID: 21306584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.