These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 16675010)
1. Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Motlagh D; Yang J; Lui KY; Webb AR; Ameer GA Biomaterials; 2006 Aug; 27(24):4315-24. PubMed ID: 16675010 [TBL] [Abstract][Full Text] [Related]
2. Poly(glycerol sebacate) nanofiber scaffolds by core/shell electrospinning. Yi F; LaVan DA Macromol Biosci; 2008 Sep; 8(9):803-6. PubMed ID: 18504802 [TBL] [Abstract][Full Text] [Related]
3. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering. Yang K; Zhang J; Ma X; Ma Y; Kan C; Ma H; Li Y; Yuan Y; Liu C Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():37-47. PubMed ID: 26249563 [TBL] [Abstract][Full Text] [Related]
4. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering. Lin D; Yang K; Tang W; Liu Y; Yuan Y; Liu C Colloids Surf B Biointerfaces; 2015 Jul; 131():1-11. PubMed ID: 25935647 [TBL] [Abstract][Full Text] [Related]
5. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. Motlagh D; Allen J; Hoshi R; Yang J; Lui K; Ameer G J Biomed Mater Res A; 2007 Sep; 82(4):907-16. PubMed ID: 17335023 [TBL] [Abstract][Full Text] [Related]
6. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Sundback CA; Shyu JY; Wang Y; Faquin WC; Langer RS; Vacanti JP; Hadlock TA Biomaterials; 2005 Sep; 26(27):5454-64. PubMed ID: 15860202 [TBL] [Abstract][Full Text] [Related]
7. Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate. Crapo PM; Wang Y Biomaterials; 2010 Mar; 31(7):1626-35. PubMed ID: 19962188 [TBL] [Abstract][Full Text] [Related]
8. Use of cyclic strain bioreactor for the upregulation of key tenocyte gene expression on Poly(glycerol-sebacate) (PGS) sheets. Deniz P; Guler S; Çelik E; Hosseinian P; Aydin HM Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110293. PubMed ID: 31753347 [TBL] [Abstract][Full Text] [Related]
9. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067 [TBL] [Abstract][Full Text] [Related]
10. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Frydrych M; Román S; MacNeil S; Chen B Acta Biomater; 2015 May; 18():40-9. PubMed ID: 25769230 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of a mechanically anisotropic poly(glycerol sebacate) membrane for tissue engineering. Hsu CN; Lee PY; Tuan-Mu HY; Li CY; Hu JJ J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):760-770. PubMed ID: 28346743 [TBL] [Abstract][Full Text] [Related]
12. Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Vogt L; Rivera LR; Liverani L; Piegat A; El Fray M; Boccaccini AR Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109712. PubMed ID: 31349433 [TBL] [Abstract][Full Text] [Related]
13. Mesenchymal Cells Affect Salivary Epithelial Cell Morphology on PGS/PLGA Core/Shell Nanofibers. Sfakis L; Kamaldinov T; Khmaladze A; Hosseini ZF; Nelson DA; Larsen M; Castracane J Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29596382 [TBL] [Abstract][Full Text] [Related]
15. Microwave-assisted facile fabrication of porous poly (glycerol sebacate) scaffolds. Lee SH; Lee KW; Gade PS; Robertson AM; Wang Y J Biomater Sci Polym Ed; 2018; 29(7-9):907-916. PubMed ID: 28569644 [TBL] [Abstract][Full Text] [Related]
16. A poly(glycerol sebacate) based photo/thermo dual curable biodegradable and biocompatible polymer for biomedical applications. Wang M; Lei D; Liu Z; Chen S; Sun L; Lv Z; Huang P; Jiang Z; You Z J Biomater Sci Polym Ed; 2017 Oct; 28(15):1728-1739. PubMed ID: 28657862 [TBL] [Abstract][Full Text] [Related]
17. In vivo degradation characteristics of poly(glycerol sebacate). Wang Y; Kim YM; Langer R J Biomed Mater Res A; 2003 Jul; 66(1):192-7. PubMed ID: 12833446 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic Polymerization of Poly(glycerol-1,8-octanediol-sebacate): Versatile Poly(glycerol sebacate) Analogues that Form Monocomponent Biodegradable Fiber Scaffolds. Lang K; Bhattacharya S; Ning Z; Sánchez-Leija RJ; Bramson MTK; Centore R; Corr DT; Linhardt RJ; Gross RA Biomacromolecules; 2020 Aug; 21(8):3197-3206. PubMed ID: 32559083 [TBL] [Abstract][Full Text] [Related]
19. In vitro human chondrocyte culture on plasma-treated poly(glycerol sebacate) scaffolds. Theerathanagorn T; Klangjorhor J; Sakulsombat M; Pothacharoen P; Pruksakorn D; Kongtawelert P; Janvikul W J Biomater Sci Polym Ed; 2015; 26(18):1386-401. PubMed ID: 26387514 [TBL] [Abstract][Full Text] [Related]
20. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites. Liang SL; Cook WD; Thouas GA; Chen QZ Biomaterials; 2010 Nov; 31(33):8516-29. PubMed ID: 20739061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]