BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 16675115)

  • 1. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces.
    Burton Z; Bhushan B
    Ultramicroscopy; 2006; 106(8-9):709-19. PubMed ID: 16675115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructure on taro leaves resists fouling by colloids and bacteria under submerged conditions.
    Ma J; Sun Y; Gleichauf K; Lou J; Li Q
    Langmuir; 2011 Aug; 27(16):10035-40. PubMed ID: 21736298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repellency of the lotus leaf: contact angles, drop retention, and sliding angles.
    Extrand CW; Moon SI
    Langmuir; 2014 Jul; 30(29):8791-7. PubMed ID: 25029189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems.
    Burton Z; Bhushan B
    Nano Lett; 2005 Aug; 5(8):1607-13. PubMed ID: 16089497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired surfaces with special wettability.
    Sun T; Feng L; Gao X; Jiang L
    Acc Chem Res; 2005 Aug; 38(8):644-52. PubMed ID: 16104687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf.
    Yamamoto M; Nishikawa N; Mayama H; Nonomura Y; Yokojima S; Nakamura S; Uchida K
    Langmuir; 2015 Jul; 31(26):7355-63. PubMed ID: 26075949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lotus-like biomimetic hierarchical structures developed by the self-assembly of tubular plant waxes.
    Bhushan B; Jung YC; Niemietz A; Koch K
    Langmuir; 2009 Feb; 25(3):1659-66. PubMed ID: 19132938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
    Bhushan B; Jung YC; Koch K
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1631-72. PubMed ID: 19376764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.
    Long J; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M
    ACS Appl Mater Interfaces; 2015 May; 7(18):9858-65. PubMed ID: 25906058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hydrophobicity of a lotus leaf: a nanomechanical and computational approach.
    Balani K; Batista RG; Lahiri D; Agarwal A
    Nanotechnology; 2009 Jul; 20(30):305707. PubMed ID: 19584417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf.
    Lin J; Cai Y; Wang X; Ding B; Yu J; Wang M
    Nanoscale; 2011 Mar; 3(3):1258-62. PubMed ID: 21270991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties.
    Qu M; Zhao G; Cao X; Zhang J
    Langmuir; 2008 Apr; 24(8):4185-9. PubMed ID: 18324852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of wheat wax (Triticum aestivum, c.v. 'Naturastar' L.): from the molecular level to three dimensional crystals.
    Koch K; Barthlott W; Koch S; Hommes A; Wandelt K; Mamdouh W; De-Feyter S; Broekmann P
    Planta; 2006 Jan; 223(2):258-70. PubMed ID: 16133211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of leaf surfaces using scanning ion conductance microscopy.
    Walker SC; Allen S; Bell G; Roberts CJ
    J Microsc; 2015 May; 258(2):119-26. PubMed ID: 25611705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Friction and adhesion forces of Bacillus thuringiensis spores on planar surfaces in atmospheric systems.
    Kweon H; Yiacoumi S; Tsouris C
    Langmuir; 2011 Dec; 27(24):14975-81. PubMed ID: 22059743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adhesion and removal of E. coli K12 as affected by leafy green produce epicuticular wax composition, surface roughness, produce and bacterial surface hydrophobicity, and sanitizers.
    Palma-Salgado S; Ku KM; Dong M; Nguyen TH; Juvik JA; Feng H
    Int J Food Microbiol; 2020 Dec; 334():108834. PubMed ID: 32861985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof.
    Kumar M; Bhardwaj R
    Sci Rep; 2020 Jan; 10(1):935. PubMed ID: 31969578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces.
    Bringe K; Schumacher CF; Schmitz-Eiberger M; Steiner U; Oerke EC
    Phytochemistry; 2006 Jan; 67(2):161-70. PubMed ID: 16321411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible superhydrophilicity and superhydrophobicity on a lotus-leaf pattern.
    de Leon A; Advincula RC
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22666-72. PubMed ID: 25412015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method for producing "Lotus Effect" on a biomimetic shark skin.
    Liu Y; Li G
    J Colloid Interface Sci; 2012 Dec; 388(1):235-42. PubMed ID: 22995249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.