BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16675456)

  • 1. Transcriptional profiling of enriched populations of stem cells versus transient amplifying cells. A comparison of limbal and corneal epithelial basal cells.
    Zhou M; Li XM; Lavker RM
    J Biol Chem; 2006 Jul; 281(28):19600-9. PubMed ID: 16675456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentially expressed genes associated with human limbal epithelial phenotypes: new molecules that potentially facilitate selection of stem cell-enriched populations.
    Takács L; Tóth E; Losonczy G; Szanto A; Bähr-Ivacevic T; Benes V; Berta A; Vereb G
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1252-60. PubMed ID: 21071743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics.
    Kulkarni BB; Tighe PJ; Mohammed I; Yeung AM; Powe DG; Hopkinson A; Shanmuganathan VA; Dua HS
    BMC Genomics; 2010 Sep; 11():526. PubMed ID: 20920242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human corneal epithelial subpopulations: oxygen dependent ex vivo expansion and transcriptional profiling.
    Bath C
    Acta Ophthalmol; 2013 Jun; 91 Thesis 4():1-34. PubMed ID: 23732018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional reconstruction of rabbit corneal epithelium by human limbal cells cultured on amniotic membrane.
    Du Y; Chen J; Funderburgh JL; Zhu X; Li L
    Mol Vis; 2003 Dec; 9():635-43. PubMed ID: 14685149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Cell RNA Transcriptome Helps Define the Limbal/Corneal Epithelial Stem/Early Transit Amplifying Cells and How Autophagy Affects This Population.
    Kaplan N; Wang J; Wray B; Patel P; Yang W; Peng H; Lavker RM
    Invest Ophthalmol Vis Sci; 2019 Aug; 60(10):3570-3583. PubMed ID: 31419300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viability of limbal epithelium after anterior lamellar harvesting using a microkeratome.
    Tungsiripat T; Sarayba MA; Taban M; Sweet PM; Osann KE; Chuck RS
    Ophthalmology; 2004 Mar; 111(3):469-75. PubMed ID: 15019321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The key role of insulin-like growth factor I in limbal stem cell differentiation and the corneal wound-healing process.
    Trosan P; Svobodova E; Chudickova M; Krulova M; Zajicova A; Holan V
    Stem Cells Dev; 2012 Dec; 21(18):3341-50. PubMed ID: 22873171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle.
    Lavker RM; Tseng SC; Sun TT
    Exp Eye Res; 2004 Mar; 78(3):433-46. PubMed ID: 15106923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method for a high enrichment of human corneal epithelial stem cells for genomic analysis.
    Kasinathan JR; Namperumalsamy VP; Veerappan M; Chidambaranathan GP
    Microsc Res Tech; 2016 Dec; 79(12):1165-1172. PubMed ID: 27862636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of stem cell properties in cell populations isolated from human central and limbal corneal epithelium.
    Chang CY; McGhee JJ; Green CR; Sherwin T
    Cornea; 2011 Oct; 30(10):1155-62. PubMed ID: 21849892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute wound healing in the human central corneal epithelium appears to be independent of limbal stem cell influence.
    Chang CY; Green CR; McGhee CN; Sherwin T
    Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5279-86. PubMed ID: 18515566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Identification of human corneal epithelial stem cells].
    Chen Z; Sun HM; Yuan XY
    Zhonghua Yan Ke Za Zhi; 2005 Nov; 41(11):1014-9. PubMed ID: 16318755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique expression pattern and functional role of periostin in human limbal stem cells.
    Qu Y; Chi W; Hua X; Deng R; Li J; Liu Z; Pflugfelder SC; Li DQ
    PLoS One; 2015; 10(2):e0117139. PubMed ID: 25658308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of limbal stem cells.
    Schlötzer-Schrehardt U; Kruse FE
    Exp Eye Res; 2005 Sep; 81(3):247-64. PubMed ID: 16051216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell cycle protein expression and proliferative status in human corneal cells.
    Joyce NC; Meklir B; Joyce SJ; Zieske JD
    Invest Ophthalmol Vis Sci; 1996 Mar; 37(4):645-55. PubMed ID: 8595965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The phenotype of limbal epithelial stem cells.
    Figueira EC; Di Girolamo N; Coroneo MT; Wakefield D
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):144-56. PubMed ID: 17197527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rare corneal clones in mice suggest an age-related decrease of stem cell activity and support the limbal epithelial stem cell hypothesis.
    Douvaras P; Webb S; Whitaker DA; Dorà N; Hill RE; Dorin JR; West JD
    Stem Cell Res; 2012 Jan; 8(1):109-19. PubMed ID: 22099025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization, isolation, expansion and clinical therapy of human corneal epithelial stem/progenitor cells.
    Li DQ; Wang Z; Yoon KC; Bian F
    J Stem Cells; 2014; 9(2):79-91. PubMed ID: 25158157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gap junction protein connexin 43 serves as a negative marker for a stem cell-containing population of human limbal epithelial cells.
    Chen Z; Evans WH; Pflugfelder SC; Li DQ
    Stem Cells; 2006 May; 24(5):1265-73. PubMed ID: 16424398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.