BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16675604)

  • 1. Expressed sequence tags (ESTs) and phylogenetic analysis of floral genes from a paleoherb species, Asarum caudigerum.
    Zhao Y; Wang G; Zhang J; Yang J; Peng S; Gao L; Li C; Hu J; Li D; Gao L
    Ann Bot; 2006 Jul; 98(1):157-63. PubMed ID: 16675604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extended expression of B-class MADS-box genes in the paleoherb Asarum caudigerum.
    Zhao YH; Möller M; Yang JB; Liu TS; Zhao JF; Dong LN; Zhang JP; Li CY; Wang GY; Li DZ
    Planta; 2010 Jan; 231(2):265-76. PubMed ID: 19904556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The expression and phylogenetic analysis of four AP3-like paralogs in the stamens, carpels, and single-whorl perianth of the paleoherb Asarum caudigerum.
    Zhao YH; Larson-Rabin Z; Li DZ; Wang GY; Peng S; Li CY
    Mol Biol Rep; 2013 Aug; 40(8):4691-9. PubMed ID: 23657595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental genetics of the perianthless flowers and bracts of a paleoherb species, Saururus chinensis.
    Zhao YH; Larson-Rabin Z; Wang GY; Möller M; Li CY; Zhang JP; Li HT; Li DZ
    PLoS One; 2013; 8(1):e53019. PubMed ID: 23382831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators.
    Kim S; Koh J; Yoo MJ; Kong H; Hu Y; Ma H; Soltis PS; Soltis DE
    Plant J; 2005 Sep; 43(5):724-44. PubMed ID: 16115069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development.
    Liu C; Zhang J; Zhang N; Shan H; Su K; Zhang J; Meng Z; Kong H; Chen Z
    Mol Biol Evol; 2010 Jul; 27(7):1598-611. PubMed ID: 20147438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.
    Hernández-Hernández T; Martínez-Castilla LP; Alvarez-Buylla ER
    Mol Biol Evol; 2007 Feb; 24(2):465-81. PubMed ID: 17135333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origination and selection of ABCDE and AGL6 subfamily MADS-box genes in gymnosperms and angiosperms.
    Shen G; Yang CH; Shen CY; Huang KS
    Biol Res; 2019 Apr; 52(1):25. PubMed ID: 31018872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EST database for early flower development in California poppy (Eschscholzia californica Cham., Papaveraceae) tags over 6,000 genes from a basal eudicot.
    Carlson JE; Leebens-Mack JH; Wall PK; Zahn LM; Mueller LA; Landherr LL; Hu Y; Ilut DC; Arrington JM; Choirean S; Becker A; Field D; Tanksley SD; Ma H; dePamphilis CW
    Plant Mol Biol; 2006 Oct; 62(3):351-69. PubMed ID: 16915518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes.
    Becker A; Kaufmann K; Freialdenhoven A; Vincent C; Li MA; Saedler H; Theissen G
    Mol Genet Genomics; 2002 Feb; 266(6):942-50. PubMed ID: 11862488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history.
    Zahn LM; Kong H; Leebens-Mack JH; Kim S; Soltis PS; Landherr LL; Soltis DE; Depamphilis CW; Ma H
    Genetics; 2005 Apr; 169(4):2209-23. PubMed ID: 15687268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MADS-box genes and floral development: the dark side.
    Heijmans K; Morel P; Vandenbussche M
    J Exp Bot; 2012 Sep; 63(15):5397-404. PubMed ID: 22915743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcript profiling of chickpea pod wall revealed the expression of floral homeotic gene AGAMOUS-like X2 (CaAGLX2).
    Vasantrao JM; Baruah IK; Panda D; Bhattacharjee M; Acharjee S; Sarmah BK
    Mol Biol Rep; 2019 Dec; 46(6):5713-5722. PubMed ID: 31463640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of floral MADS-box genes in Sinofranchetia chinensis (Lardizabalaceae): implications for the nature of the nectar leaves.
    Hu J; Zhang J; Shan H; Chen Z
    Ann Bot; 2012 Jul; 110(1):57-69. PubMed ID: 22652421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Putative floral brood-site mimicry, loss of autonomous selfing, and reduced vegetative growth are significantly correlated with increased diversification in Asarum (Aristolochiaceae).
    Sinn BT; Kelly LM; Freudenstein JV
    Mol Phylogenet Evol; 2015 Aug; 89():194-204. PubMed ID: 25937558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Floral gene resources from basal angiosperms for comparative genomics research.
    Albert VA; Soltis DE; Carlson JE; Farmerie WG; Wall PK; Ilut DC; Solow TM; Mueller LA; Landherr LL; Hu Y; Buzgo M; Kim S; Yoo MJ; Frohlich MW; Perl-Treves R; Schlarbaum SE; Bliss BJ; Zhang X; Tanksley SD; Oppenheimer DG; Soltis PS; Ma H; DePamphilis CW; Leebens-Mack JH
    BMC Plant Biol; 2005 Mar; 5():5. PubMed ID: 15799777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes.
    Aoki S; Uehara K; Imafuku M; Hasebe M; Ito M
    J Plant Res; 2004 Jun; 117(3):229-44. PubMed ID: 15138844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiquity and evolution of the MADS-box gene family controlling flower development in plants.
    Nam J; dePamphilis CW; Ma H; Nei M
    Mol Biol Evol; 2003 Sep; 20(9):1435-47. PubMed ID: 12777513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the petaloid bracts of a paleoherb species, Saururus chinensis.
    Zhao YH; Zhang XM; Li DZ
    PLoS One; 2021; 16(9):e0255679. PubMed ID: 34473732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication.
    Kim S; Yoo MJ; Albert VA; Farris JS; Soltis PS; Soltis DE
    Am J Bot; 2004 Dec; 91(12):2102-18. PubMed ID: 21652358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.