These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 16676208)
1. Contrasting mechanisms of secondary metabolite accumulation during leaf development in two tropical tree species with different leaf expansion strategies. Brenes-Arguedas T; Horton MW; Coley PD; Lokvam J; Waddell RA; Meizoso-O'Meara BE; Kursar TA Oecologia; 2006 Aug; 149(1):91-100. PubMed ID: 16676208 [TBL] [Abstract][Full Text] [Related]
2. Divergence in structure and activity of phenolic defenses in young leaves of two co-occurring Inga species. Lokvam J; Kursar TA J Chem Ecol; 2005 Nov; 31(11):2563-80. PubMed ID: 16273429 [TBL] [Abstract][Full Text] [Related]
3. Allelochemic function for a primary metabolite: the case of l-tyrosine hyper-production in Inga umbellifera (Fabaceae). Lokvam J; Brenes-Arguedas T; Lee JS; Coley PD; Kursar TA Am J Bot; 2006 Aug; 93(8):1109-15. PubMed ID: 21642176 [TBL] [Abstract][Full Text] [Related]
5. Quantitative and qualitative shifts in defensive metabolites define chemical defense investment during leaf development in Inga, a genus of tropical trees. Wiggins NL; Forrister DL; Endara MJ; Coley PD; Kursar TA Ecol Evol; 2016 Jan; 6(2):478-92. PubMed ID: 26843932 [TBL] [Abstract][Full Text] [Related]
6. Do the antiherbivore traits of expanding leaves in the Neotropical tree Inga paraensis (Fabaceae) vary with light availability? Sinimbu G; Coley PD; Lemes MR; Lokvam J; Kursar TA Oecologia; 2012 Nov; 170(3):669-76. PubMed ID: 22614262 [TBL] [Abstract][Full Text] [Related]
7. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Kursar TA; Dexter KG; Lokvam J; Pennington RT; Richardson JE; Weber MG; Murakami ET; Drake C; McGregor R; Coley PD Proc Natl Acad Sci U S A; 2009 Oct; 106(43):18073-8. PubMed ID: 19805183 [TBL] [Abstract][Full Text] [Related]
8. Consequences of interspecific variation in defenses and herbivore host choice for the ecology and evolution of Inga, a speciose rainforest tree. Coley PD; Endara MJ; Kursar TA Oecologia; 2018 Jun; 187(2):361-376. PubMed ID: 29428967 [TBL] [Abstract][Full Text] [Related]
9. Leaf damage and density-dependent effects on six Inga species in a neotropical forest. Brenes-Arguedas T Rev Biol Trop; 2012 Dec; 60(4):1503-12. PubMed ID: 23342505 [TBL] [Abstract][Full Text] [Related]
10. Galloyl depsides of tyrosine from young leaves of Inga laurina. Lokvam J; Clausen TP; Grapov D; Coley PD; Kursar TA J Nat Prod; 2007 Jan; 70(1):134-6. PubMed ID: 17253867 [TBL] [Abstract][Full Text] [Related]
11. High herbivore pressure favors constitutive over induced defense. Bixenmann RJ; Coley PD; Weinhold A; Kursar TA Ecol Evol; 2016 Sep; 6(17):6037-49. PubMed ID: 27648224 [TBL] [Abstract][Full Text] [Related]
12. Monocot leaves are eaten less than dicot leaves in tropical lowland rain forests: correlations with toughness and leaf presentation. Grubb PJ; Jackson RV; Barberis IM; Bee JN; Coomes DA; Dominy NJ; De La Fuente MA; Lucas PW; Metcalfe DJ; Svenning JC; Turner IM; Vargas O Ann Bot; 2008 Jun; 101(9):1379-89. PubMed ID: 18387972 [TBL] [Abstract][Full Text] [Related]
13. Does leaf flushing in the dry season affect leaf traits and herbivory in a tropical dry forest? Silva JO; Espírito-Santo MM; Santos JC; Rodrigues PMS Naturwissenschaften; 2020 Nov; 107(6):51. PubMed ID: 33241430 [TBL] [Abstract][Full Text] [Related]
14. Leaf traits and herbivory levels in a tropical gymnosperm, Zamia stevensonii (Zamiaceae). Prado A; Sierra A; Windsor D; Bede JC Am J Bot; 2014 Mar; 101(3):437-47. PubMed ID: 24638164 [TBL] [Abstract][Full Text] [Related]
15. Trade-offs between growth, reproduction and defense in response to resource availability manipulations. Tuller J; Marquis RJ; Andrade SMM; Monteiro AB; Faria LDB PLoS One; 2018; 13(8):e0201873. PubMed ID: 30133458 [TBL] [Abstract][Full Text] [Related]
16. Interspecific variation in leaf functional and defensive traits in oak species and its underlying climatic drivers. Abdala-Roberts L; Galmán A; Petry WK; Covelo F; de la Fuente M; Glauser G; Moreira X PLoS One; 2018; 13(8):e0202548. PubMed ID: 30125315 [TBL] [Abstract][Full Text] [Related]
17. Species richness and niche space for temperate and tropical folivores. Ricklefs RE; Marquis RJ Oecologia; 2012 Jan; 168(1):213-20. PubMed ID: 21833641 [TBL] [Abstract][Full Text] [Related]
18. Sources of variation in foliar secondary chemistry in a tropical forest tree community. Sedio BE; Rojas Echeverri JC; Boya P CA; Wright SJ Ecology; 2017 Mar; 98(3):616-623. PubMed ID: 27984635 [TBL] [Abstract][Full Text] [Related]
19. Cinnamoyl glucosides of catechin and dimeric procyanidins from young leaves of Inga umbellifera (Fabaceae). Lokvam J; Coley PD; Kursar TA Phytochemistry; 2004 Feb; 65(3):351-8. PubMed ID: 14751307 [TBL] [Abstract][Full Text] [Related]
20. Acquiring nutrients from tree leaves: effects of leaf maturity and development type on a generalist caterpillar. Barbehenn RV; Kapila M; Kileen S; Nusbaum CP Oecologia; 2017 May; 184(1):59-73. PubMed ID: 28342011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]