These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Synthesis and characterization of thermoset biodegradable elastomers based on star-poly(epsilon-caprolactone-co-D,L-lactide). Amsden B; Wang S; Wyss U Biomacromolecules; 2004; 5(4):1399-404. PubMed ID: 15244457 [TBL] [Abstract][Full Text] [Related]
7. Amorphous linear aliphatic polyesters for the facile preparation of tunable rapidly degrading elastomeric devices and delivery vectors. Olson DA; Gratton SE; DeSimone JM; Sheares VV J Am Chem Soc; 2006 Oct; 128(41):13625-33. PubMed ID: 17031977 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and characterization of a photo-cross-linked biodegradable elastomer. Amsden BG; Misra G; Gu F; Younes HM Biomacromolecules; 2004; 5(6):2479-86. PubMed ID: 15530066 [TBL] [Abstract][Full Text] [Related]
9. Novel biodegradable copolyesters containing blocks of poly(3-hydroxyoctanoate) and poly(epsilon-caprolactone): synthesis and characterization. Timbart L; Renard E; Langlois V; Guerin P Macromol Biosci; 2004 Nov; 4(11):1014-20. PubMed ID: 15540249 [TBL] [Abstract][Full Text] [Related]
11. Correlation between chemical and solid-state structures and enzymatic hydrolysis in novel biodegradable polyesters. The case of poly(propylene alkanedicarboxylate)s. Bikiaris DN; Papageorgiou GZ; Giliopoulos DJ; Stergiou CA Macromol Biosci; 2008 Aug; 8(8):728-40. PubMed ID: 18615455 [TBL] [Abstract][Full Text] [Related]
12. Effects of block length on the enzymatic degradation and erosion of oxazoline linked poly-epsilon-caprolactone. Pulkkinen M; Malin M; Tarvainen T; Saarimäki T; Seppälä J; Järvinen K Eur J Pharm Sci; 2007 Jun; 31(2):119-28. PubMed ID: 17433634 [TBL] [Abstract][Full Text] [Related]
13. Molecular weight dependence of the thermal degradation of poly(epsilon-caprolactone): a thermogravimetric differential thermal Fourier transform infrared spectroscopy study. Unger M; Vogel C; Siesler HW Appl Spectrosc; 2010 Jul; 64(7):805-9. PubMed ID: 20615294 [TBL] [Abstract][Full Text] [Related]
14. Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(epsilon-caprolactone) and poly(L-lactide). Tsuji H; Ishizaka T Int J Biol Macromol; 2001 Aug; 29(2):83-9. PubMed ID: 11518579 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of biodegradable hyperbranched poly(ester-amide)s based on natural material. Li X; Su Y; Chen Q; Lin Y; Tong Y; Li Y Biomacromolecules; 2005; 6(6):3181-8. PubMed ID: 16283744 [TBL] [Abstract][Full Text] [Related]
17. Inclusion complex formation between alpha-cyclodextrin and biodegradable aliphatic polyesters. Shin KM; Dong T; He Y; Taguchi Y; Oishi A; Nishida H; Inoue Y Macromol Biosci; 2004 Dec; 4(12):1075-83. PubMed ID: 15586392 [TBL] [Abstract][Full Text] [Related]
18. Thermoplastic biodegradable elastomers based on ε-caprolactone and L-lactide block co-polymers: a new synthetic approach. Lipik VT; Kong JF; Chattopadhyay S; Widjaja LK; Liow SS; Venkatraman SS; Abadie MJ Acta Biomater; 2010 Nov; 6(11):4261-70. PubMed ID: 20566308 [TBL] [Abstract][Full Text] [Related]
19. Novel biodegradable shape memory material based on partial inclusion complex formation between alpha-cyclodextrin and poly(epsilon-caprolactone). Luo H; Liu Y; Yu Z; Zhang S; Li B Biomacromolecules; 2008 Oct; 9(10):2573-7. PubMed ID: 18798668 [TBL] [Abstract][Full Text] [Related]
20. Formation of and coalescence from the inclusion complex of a biodegradable block copolymer and alpha-cyclodextrin. 2: A novel way to regulate the biodegradation behavior of biodegradable block copolymers. Shuai X; Wei M; Porbeni FE; Bullions TA; Tonelli AE Biomacromolecules; 2002; 3(1):201-7. PubMed ID: 11866574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]