BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 16676379)

  • 1. Biodegradable network elastomeric polyesters from multifunctional aliphatic carboxylic acids and poly(epsilon-caprolactone) diols.
    Nagata M; Kato K; Sakai W; Tsutsumi N
    Macromol Biosci; 2006 May; 6(5):333-9. PubMed ID: 16676379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers.
    Yang J; Webb AR; Pickerill SJ; Hageman G; Ameer GA
    Biomaterials; 2006 Mar; 27(9):1889-98. PubMed ID: 16290904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, characterization, and in vitro degradation of a biodegradable photo-cross-linked film from liquid poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylate.
    Shen JY; Pan XY; Lim CH; Chan-Park MB; Zhu X; Beuerman RW
    Biomacromolecules; 2007 Feb; 8(2):376-85. PubMed ID: 17291060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable nitric oxide-releasing poly(diol citrate) elastomers.
    Zhao H; Serrano MC; Popowich DA; Kibbe MR; Ameer GA
    J Biomed Mater Res A; 2010 Apr; 93(1):356-63. PubMed ID: 19569216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers.
    Cohn D; Salomon AH
    Biomaterials; 2005 May; 26(15):2297-305. PubMed ID: 15585232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of thermoset biodegradable elastomers based on star-poly(epsilon-caprolactone-co-D,L-lactide).
    Amsden B; Wang S; Wyss U
    Biomacromolecules; 2004; 5(4):1399-404. PubMed ID: 15244457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amorphous linear aliphatic polyesters for the facile preparation of tunable rapidly degrading elastomeric devices and delivery vectors.
    Olson DA; Gratton SE; DeSimone JM; Sheares VV
    J Am Chem Soc; 2006 Oct; 128(41):13625-33. PubMed ID: 17031977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of a photo-cross-linked biodegradable elastomer.
    Amsden BG; Misra G; Gu F; Younes HM
    Biomacromolecules; 2004; 5(6):2479-86. PubMed ID: 15530066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel biodegradable copolyesters containing blocks of poly(3-hydroxyoctanoate) and poly(epsilon-caprolactone): synthesis and characterization.
    Timbart L; Renard E; Langlois V; Guerin P
    Macromol Biosci; 2004 Nov; 4(11):1014-20. PubMed ID: 15540249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization and cytocompatibility of a poly(diol-tricarballylate) visible light photo-cross-linked biodegradable elastomer.
    Shaker MA; Doré JJ; Younes HM
    J Biomater Sci Polym Ed; 2010; 21(4):507-28. PubMed ID: 20233506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between chemical and solid-state structures and enzymatic hydrolysis in novel biodegradable polyesters. The case of poly(propylene alkanedicarboxylate)s.
    Bikiaris DN; Papageorgiou GZ; Giliopoulos DJ; Stergiou CA
    Macromol Biosci; 2008 Aug; 8(8):728-40. PubMed ID: 18615455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of block length on the enzymatic degradation and erosion of oxazoline linked poly-epsilon-caprolactone.
    Pulkkinen M; Malin M; Tarvainen T; Saarimäki T; Seppälä J; Järvinen K
    Eur J Pharm Sci; 2007 Jun; 31(2):119-28. PubMed ID: 17433634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular weight dependence of the thermal degradation of poly(epsilon-caprolactone): a thermogravimetric differential thermal Fourier transform infrared spectroscopy study.
    Unger M; Vogel C; Siesler HW
    Appl Spectrosc; 2010 Jul; 64(7):805-9. PubMed ID: 20615294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(epsilon-caprolactone) and poly(L-lactide).
    Tsuji H; Ishizaka T
    Int J Biol Macromol; 2001 Aug; 29(2):83-9. PubMed ID: 11518579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of biodegradable hyperbranched poly(ester-amide)s based on natural material.
    Li X; Su Y; Chen Q; Lin Y; Tong Y; Li Y
    Biomacromolecules; 2005; 6(6):3181-8. PubMed ID: 16283744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic chain scission kinetics of poly(epsilon-caprolactone) monolayers.
    Kulkarni A; Reiche J; Kratz K; Kamusewitz H; Sokolov IM; Lendlein A
    Langmuir; 2007 Nov; 23(24):12202-7. PubMed ID: 17949018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inclusion complex formation between alpha-cyclodextrin and biodegradable aliphatic polyesters.
    Shin KM; Dong T; He Y; Taguchi Y; Oishi A; Nishida H; Inoue Y
    Macromol Biosci; 2004 Dec; 4(12):1075-83. PubMed ID: 15586392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoplastic biodegradable elastomers based on ε-caprolactone and L-lactide block co-polymers: a new synthetic approach.
    Lipik VT; Kong JF; Chattopadhyay S; Widjaja LK; Liow SS; Venkatraman SS; Abadie MJ
    Acta Biomater; 2010 Nov; 6(11):4261-70. PubMed ID: 20566308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel biodegradable shape memory material based on partial inclusion complex formation between alpha-cyclodextrin and poly(epsilon-caprolactone).
    Luo H; Liu Y; Yu Z; Zhang S; Li B
    Biomacromolecules; 2008 Oct; 9(10):2573-7. PubMed ID: 18798668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of and coalescence from the inclusion complex of a biodegradable block copolymer and alpha-cyclodextrin. 2: A novel way to regulate the biodegradation behavior of biodegradable block copolymers.
    Shuai X; Wei M; Porbeni FE; Bullions TA; Tonelli AE
    Biomacromolecules; 2002; 3(1):201-7. PubMed ID: 11866574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.