BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16677042)

  • 1. Degradation of polyaminophosphazenes: effects of hydrolytic environment and polymer processing.
    Andrianov AK; Marin A
    Biomacromolecules; 2006 May; 7(5):1581-6. PubMed ID: 16677042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes.
    Singh A; Krogman NR; Sethuraman S; Nair LS; Sturgeon JL; Brown PW; Laurencin CT; Allcock HR
    Biomacromolecules; 2006 Mar; 7(3):914-8. PubMed ID: 16529431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine-bearing polyphosphazenes.
    Allcock HR; Singh A; Ambrosio AM; Laredo WR
    Biomacromolecules; 2003; 4(6):1646-53. PubMed ID: 14606891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miscibility of bioerodible polyphosphazene/poly(lactide-co-glycolide) blends.
    Krogman NR; Singh A; Nair LS; Laurencin CT; Allcock HR
    Biomacromolecules; 2007 Apr; 8(4):1306-12. PubMed ID: 17338563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate)phosphazene composites for biomedical applications.
    Greish YE; Bender JD; Lakshmi S; Brown PW; Allcock HR; Laurencin CT
    Biomaterials; 2005 Jan; 26(1):1-9. PubMed ID: 15193876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of environmental factors on hydrolytic degradation of water-soluble polyphosphazene polyelectrolyte in aqueous solutions.
    Decollibus DP; Marin A; Andrianov AK
    Biomacromolecules; 2010 Aug; 11(8):2033-8. PubMed ID: 20690712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model.
    Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT
    J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol).
    Loh XJ; Goh SH; Li J
    Biomaterials; 2007 Oct; 28(28):4113-23. PubMed ID: 17573109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization, and osteocompatibility evaluation of novel alanine-based polyphosphazenes.
    Nair LS; Lee DA; Bender JD; Barrett EW; Greish YE; Brown PW; Allcock HR; Laurencin CT
    J Biomed Mater Res A; 2006 Jan; 76(1):206-13. PubMed ID: 16265637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, properties, and biological activity of poly[di(sodium carboxylatoethylphenoxy)phosphazene].
    Andrianov AK; Marin A; Chen J
    Biomacromolecules; 2006 Jan; 7(1):394-9. PubMed ID: 16398541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable polymers. II. Degradation characteristics of hydrolysis-sensitive poly[(organo)phosphazenes].
    Crommen JH; Schacht EH; Mense EH
    Biomaterials; 1992; 13(9):601-11. PubMed ID: 1391407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and biologically relevant properties of polyphosphazene polyacids.
    Andrianov AK; Svirkin YY; LeGolvan MP
    Biomacromolecules; 2004; 5(5):1999-2006. PubMed ID: 15360316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of polyphosphazenes for skeletal tissue regeneration.
    Laurencin CT; Norman ME; Elgendy HM; el-Amin SF; Allcock HR; Pucher SR; Ambrosio AA
    J Biomed Mater Res; 1993 Jul; 27(7):963-73. PubMed ID: 8360223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly[(amino acid ester)phosphazenes] as substrates for the controlled release of small molecules.
    Allcock HR; Pucher SR; Scopelianos AG
    Biomaterials; 1994 Jun; 15(8):563-9. PubMed ID: 7948574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion and pH effect on the lower critical solution temperature phase behavior in neutral and acidic poly(organophosphazene) counterparts.
    Ahn S; Monge EC; Song SC
    Langmuir; 2009 Feb; 25(4):2407-18. PubMed ID: 19140714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization and hydrolytic degradation of degradable poly(butylene terephthalate)/poly(ethylene glycol) (PBT/PEG) copolymers.
    Chao G; Fan L; Jia W; Qian Z; Gu Y; Liu C; Ni X; Li J; Deng H; Gong C; Gou M; Lei K; Huang A; Huang C; Yang J; Kan B; Tu M
    J Mater Sci Mater Med; 2007 Mar; 18(3):449-55. PubMed ID: 17334695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of thermoresponsive coacervation on the hydrolytic degradation of amphipathic poly(gamma-glutamate)s.
    Shimokuri T; Kaneko T; Akashi M
    Macromol Biosci; 2006 Nov; 6(11):942-51. PubMed ID: 17099867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable poly(2-dimethylamino ethylamino)phosphazene for in vivo gene delivery to tumor cells. Effect of polymer molecular weight.
    de Wolf HK; de Raad M; Snel C; van Steenbergen MJ; Fens MH; Storm G; Hennink WE
    Pharm Res; 2007 Aug; 24(8):1572-80. PubMed ID: 17435970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyacetal and poly(ortho ester)-poly(ethylene glycol) graft copolymer thermogels: preparation, hydrolysis and FITC-BSA release studies.
    Schacht E; Toncheva V; Vandertaelen K; Heller J
    J Control Release; 2006 Nov; 116(2):219-25. PubMed ID: 16962198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of novel poly[(organo)phosphazenes] with cell-adhesive side groups.
    Heyde M; Moens M; Van Vaeck L; Shakesheff KM; Davies MC; Schacht EH
    Biomacromolecules; 2007 May; 8(5):1436-45. PubMed ID: 17391003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.