BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16677632)

  • 1. Critical role of tryptophanyl residues in the conformational stability of goose delta-crystallin.
    Lee HJ; Lai YH; Huang YT; Huang CW; Chen YH; Chang GG
    Exp Eye Res; 2006 Sep; 83(3):658-66. PubMed ID: 16677632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of argininosuccinate lyase activity in duck delta1 crystallin.
    Tsai M; Koo J; Howell PL
    Biochemistry; 2005 Jun; 44(25):9034-44. PubMed ID: 15966727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural comparison of the enzymatically active and inactive forms of delta crystallin and the role of histidine 91.
    Abu-Abed M; Turner MA; Vallée F; Simpson A; Slingsby C; Howell PL
    Biochemistry; 1997 Nov; 36(46):14012-22. PubMed ID: 9369472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substitution of residues at the double dimer interface affects the stability and oligomerization of goose delta-crystallin.
    Huang CW; Tseng CC; Chen YH; Chen YH; Chou WY; Lee HJ
    FEBS J; 2009 Sep; 276(18):5126-36. PubMed ID: 19674108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic refolding barrier of guanidinium chloride denatured goose delta-crystallin leads to regular aggregate formation.
    Yin FY; Chen YH; Yu CM; Pon YC; Lee HJ
    Biophys J; 2007 Aug; 93(4):1235-45. PubMed ID: 17513375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of an inactive duck delta II crystallin mutant with bound argininosuccinate.
    Vallée F; Turner MA; Lindley PL; Howell PL
    Biochemistry; 1999 Feb; 38(8):2425-34. PubMed ID: 10029536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct interactions of αA-crystallin with homologous substrate proteins, δ-crystallin and argininosuccinate lyase, under thermal stress.
    Chen YH; Lee MT; Cheng YW; Chou WY; Yu CM; Lee HJ
    Biochimie; 2011 Feb; 93(2):314-20. PubMed ID: 20937351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of amino acid residues involved in argininosuccinate lyase activity in duck delta II crystallin.
    Chakraborty AR; Davidson A; Howell PL
    Biochemistry; 1999 Feb; 38(8):2435-43. PubMed ID: 10029537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of N-terminal truncation on double-dimer assembly of goose delta-crystallin.
    Lee HJ; Lai YH; Wu SY; Chen YH
    Biochem J; 2005 Dec; 392(Pt 3):545-54. PubMed ID: 16101585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A duck delta1 crystallin double loop mutant provides insight into residues important for argininosuccinate lyase activity.
    Tsai M; Sampaleanu LM; Greene C; Creagh L; Haynes C; Howell PL
    Biochemistry; 2004 Sep; 43(37):11672-82. PubMed ID: 15362851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile cloning and sequence analysis of goose delta-crystallin gene based on polymerase chain reaction.
    Yu CW; Chiou SH
    Biochem Biophys Res Commun; 1993 Apr; 192(2):948-53. PubMed ID: 8484796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lys-315 at the Interfaces of Diagonal Subunits of δ-Crystallin Plays a Critical Role in the Reversibility of Folding and Subunit Assembly.
    Huang CW; Lin HC; Chou CY; Kao WC; Chou WY; Lee HJ
    PLoS One; 2016; 11(1):e0145957. PubMed ID: 26731266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction of Glu294 at the subunit interface is important for the activity and stability of goose delta-crystallin.
    Huang CW; Chen YH; Chen YH; Tsai YC; Lee HJ
    Mol Vis; 2009 Nov; 15():2358-63. PubMed ID: 19936305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of tryptophan residues in an integral membrane protein: diacylglycerol kinase.
    Clark EH; East JM; Lee AG
    Biochemistry; 2003 Sep; 42(37):11065-73. PubMed ID: 12974643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-state kinetics and tryptophan fluorescence properties of halohydrin dehalogenase from Agrobacterium radiobacter. Roles of W139 and W249 in the active site and halide-induced conformational change.
    Tang L; van Merode AE; Lutje Spelberg JH; Fraaije MW; Janssen DB
    Biochemistry; 2003 Dec; 42(47):14057-65. PubMed ID: 14636074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular evolution from argininosuccinate lyase to delta-crystallin.
    Mori M; Matsubasa T; Amaya Y; Takiguchi M
    Prog Clin Biol Res; 1990; 344():683-99. PubMed ID: 2203059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the multiple forms of duck lens delta-crystallin with endogenous argininosuccinate lyase activity.
    Lee HJ; Lin CC; Chiou SH; Chang GG
    Arch Biochem Biophys; 1994 Oct; 314(1):31-8. PubMed ID: 7944404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of the highly efficient quenching of tryptophan fluorescence in human gammaD-crystallin.
    Chen J; Flaugh SL; Callis PR; King J
    Biochemistry; 2006 Sep; 45(38):11552-63. PubMed ID: 16981715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urea-dependent unfolding of murine adenosine deaminase: sequential destabilization as measured by 19F NMR.
    Shu Q; Frieden C
    Biochemistry; 2004 Feb; 43(6):1432-9. PubMed ID: 14769019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous tryptophan residues of cAPK regulatory subunit type IIbeta reveal local variations in environments and dynamics.
    Zawadzki KM; Pan CP; Barkley MD; Johnson D; Taylor SS
    Proteins; 2003 Jun; 51(4):552-61. PubMed ID: 12784214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.