BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

771 related articles for article (PubMed ID: 16677865)

  • 1. A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake.
    Fox EA
    Auton Neurosci; 2006 Jun; 126-127():9-29. PubMed ID: 16677865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lingual deficits in neurotrophin double knockout mice.
    Nosrat IV; Agerman K; Marinescu A; Ernfors P; Nosrat CA
    J Neurocytol; 2004 Dec; 33(6):607-15. PubMed ID: 16217617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term regeneration of abdominal vagus: efferents fail while afferents succeed.
    Phillips RJ; Baronowsky EA; Powley TL
    J Comp Neurol; 2003 Jan; 455(2):222-37. PubMed ID: 12454987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Musings on the wanderer: what's new in our understanding of vago-vagal reflexes? I. Morphology and topography of vagal afferents innervating the GI tract.
    Powley TL; Phillips RJ
    Am J Physiol Gastrointest Liver Physiol; 2002 Dec; 283(6):G1217-25. PubMed ID: 12388183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced intestinal brain-derived neurotrophic factor increases vagal sensory innervation of the intestine and enhances satiation.
    Biddinger JE; Fox EA
    J Neurosci; 2014 Jul; 34(31):10379-93. PubMed ID: 25080597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cranial sensory neuron development in the absence of brain-derived neurotrophic factor in BDNF/Bax double null mice.
    Hellard D; Brosenitsch T; Fritzsch B; Katz DM
    Dev Biol; 2004 Nov; 275(1):34-43. PubMed ID: 15464571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors regulating vagal sensory development: potential role in obesities of developmental origin.
    Fox EA; Murphy MC
    Physiol Behav; 2008 Apr; 94(1):90-104. PubMed ID: 18234244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin.
    Peters JH; Simasko SM; Ritter RC
    Physiol Behav; 2006 Nov; 89(4):477-85. PubMed ID: 16872644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective loss of vagal intramuscular mechanoreceptors in mice mutant for steel factor, the c-Kit receptor ligand.
    Fox EA; Phillips RJ; Byerly MS; Baronowsky EA; Chi MM; Powley TL
    Anat Embryol (Berl); 2002 Jul; 205(4):325-42. PubMed ID: 12136263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vagal afferent neurons projecting to the stomach and small intestine exhibit multiple N-methyl-D-aspartate receptor subunit phenotypes.
    Czaja K; Ritter RC; Burns GA
    Brain Res; 2006 Nov; 1119(1):86-93. PubMed ID: 16989781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation.
    Fox EA; Biddinger JE; Baquet ZC; Jones KR; McAdams J
    Am J Physiol Regul Integr Comp Physiol; 2013 Dec; 305(11):R1307-22. PubMed ID: 24068045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of neurotrophin and neurotrophin receptor disruption on the afferent inner ear innervation.
    Fritzsch B; Silos-Santiago I; Bianchi LM; Farinas I
    Semin Cell Dev Biol; 1997; 8():277-84. PubMed ID: 11542690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance.
    Fritzsch B; Tessarollo L; Coppola E; Reichardt LF
    Prog Brain Res; 2004; 146():265-78. PubMed ID: 14699969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterned expression of BDNF and NT-3 in the retina and anterior segment of the developing mammalian eye.
    Bennett JL; Zeiler SR; Jones KR
    Invest Ophthalmol Vis Sci; 1999 Nov; 40(12):2996-3005. PubMed ID: 10549663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of the vanilloid receptor (VR1) in the gastrointestinal tract.
    Ward SM; Bayguinov J; Won KJ; Grundy D; Berthoud HR
    J Comp Neurol; 2003 Oct; 465(1):121-35. PubMed ID: 12926020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-dependent time course of cerebral brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 in APP23 transgenic mice.
    Schulte-Herbrüggen O; Eckart S; Deicke U; Kühl A; Otten U; Danker-Hopfe H; Abramowski D; Staufenbiel M; Hellweg R
    J Neurosci Res; 2008 Sep; 86(12):2774-83. PubMed ID: 18438945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of central glutamate, acetylcholine and CGRP receptors in gastrointestinal afferent inputs to vagal preganglionic neurones.
    Partosoedarso ER; Blackshaw LA
    Auton Neurosci; 2000 Sep; 83(1-2):37-48. PubMed ID: 11023627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice.
    Ernfors P; Kucera J; Lee KF; Loring J; Jaenisch R
    Int J Dev Biol; 1995 Oct; 39(5):799-807. PubMed ID: 8645564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of Bdnf and TrkB signalling in the postnatal cochlea leads to a spatial reshaping of innervation along the tonotopic axis and hearing loss.
    Schimmang T; Tan J; Müller M; Zimmermann U; Rohbock K; Kôpschall I; Limberger A; Minichiello L; Knipper M
    Development; 2003 Oct; 130(19):4741-50. PubMed ID: 12925599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-gut axis and its role in the control of food intake.
    Konturek SJ; Konturek JW; Pawlik T; Brzozowski T
    J Physiol Pharmacol; 2004 Mar; 55(1 Pt 2):137-54. PubMed ID: 15082874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.