These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16677940)

  • 41. Altered corticostriatal functional connectivity in obsessive-compulsive disorder.
    Harrison BJ; Soriano-Mas C; Pujol J; Ortiz H; López-Solà M; Hernández-Ribas R; Deus J; Alonso P; Yücel M; Pantelis C; Menchon JM; Cardoner N
    Arch Gen Psychiatry; 2009 Nov; 66(11):1189-200. PubMed ID: 19884607
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neuroaxonal ion dyshomeostasis of the normal-appearing corpus callosum in experimental autoimmune encephalomyelitis.
    Chen CC; Zechariah A; Hsu YH; Chen HW; Yang LC; Chang C
    Exp Neurol; 2008 Apr; 210(2):322-30. PubMed ID: 18201701
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cortico-striatal function in sentence comprehension: insights from neurophysiology and modeling.
    Dominey PF; Inui T
    Cortex; 2009 Sep; 45(8):1012-8. PubMed ID: 19446801
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rhesus monkey and human share a similar topography of the corpus callosum as revealed by diffusion tensor MRI in vivo.
    Hofer S; Merboldt KD; Tammer R; Frahm J
    Cereb Cortex; 2008 May; 18(5):1079-84. PubMed ID: 17709556
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Short-term and long-term plasticity at corticostriatal synapses: implications for learning and memory.
    Di Filippo M; Picconi B; Tantucci M; Ghiglieri V; Bagetta V; Sgobio C; Tozzi A; Parnetti L; Calabresi P
    Behav Brain Res; 2009 Apr; 199(1):108-18. PubMed ID: 18948145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Columnar organization of estrogen receptor-alpha immunoreactive neurons in the periaqueductal gray projecting to the nucleus para-retroambiguus in the caudal brainstem of the female golden hamster.
    Gerrits PO; Krukerink M; Veening JG
    Neuroscience; 2009 Jun; 161(2):459-74. PubMed ID: 19321152
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gene transfer in the nervous system and implications for transsynaptic neuronal tracing.
    Huh Y; Oh MS; Leblanc P; Kim KS
    Expert Opin Biol Ther; 2010 May; 10(5):763-72. PubMed ID: 20367126
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Putative Animal Models of Restless Legs Syndrome: A Systematic Review and Evaluation of Their Face and Construct Validity.
    Silvani A; Ghorayeb I; Manconi M; Li Y; Clemens S
    Neurotherapeutics; 2023 Jan; 20(1):154-178. PubMed ID: 36536233
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A prefrontal network integrates preferences for advance information about uncertain rewards and punishments.
    Jezzini A; Bromberg-Martin ES; Trambaiolli LR; Haber SN; Monosov IE
    Neuron; 2021 Jul; 109(14):2339-2352.e5. PubMed ID: 34118190
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A hierarchy of manganese competition and entry in organotypic hippocampal slice cultures.
    Petrus E; Saar G; Daoust A; Dodd S; Koretsky AP
    NMR Biomed; 2021 Apr; 34(4):e4476. PubMed ID: 33538073
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimating Brain Connectivity With Diffusion-Weighted Magnetic Resonance Imaging: Promise and Peril.
    Grier MD; Zimmermann J; Heilbronner SR
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2020 Sep; 5(9):846-854. PubMed ID: 32513555
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Role of BTBD9 in the Cerebellum, Sleep-like Behaviors and the Restless Legs Syndrome.
    Lyu S; Xing H; DeAndrade MP; Perez PD; Yokoi F; Febo M; Walters AS; Li Y
    Neuroscience; 2020 Aug; 440():85-96. PubMed ID: 32446853
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-resolution MEMRI characterizes laminar specific ascending and descending spinal cord pathways in rats.
    Krishnan V; Xu J; Mendoza AG; Koretsky A; Anderson SA; Pelled G
    J Neurosci Methods; 2020 Jul; 340():108748. PubMed ID: 32335077
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Manganese-Enhanced Magnetic Resonance Imaging: Application in Central Nervous System Diseases.
    Yang J; Li Q
    Front Neurol; 2020; 11():143. PubMed ID: 32161572
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Role of BTBD9 in Striatum and Restless Legs Syndrome.
    Lyu S; Xing H; DeAndrade MP; Liu Y; Perez PD; Yokoi F; Febo M; Walters AS; Li Y
    eNeuro; 2019; 6(5):. PubMed ID: 31444227
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Applications of Manganese-Enhanced Magnetic Resonance Imaging in Ophthalmology and Visual Neuroscience.
    Deng W; Faiq MA; Liu C; Adi V; Chan KC
    Front Neural Circuits; 2019; 13():35. PubMed ID: 31156399
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Manganese Enhanced MRI for Use in Studying Neurodegenerative Diseases.
    Saar G; Koretsky AP
    Front Neural Circuits; 2018; 12():114. PubMed ID: 30666190
    [TBL] [Abstract][Full Text] [Related]  

  • 58.
    Almeida-Corrêa S; Czisch M; Wotjak CT
    Front Neural Circuits; 2018; 12():42. PubMed ID: 29887796
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anatomy, Functionality, and Neuronal Connectivity with Manganese Radiotracers for Positron Emission Tomography.
    Saar G; Millo CM; Szajek LP; Bacon J; Herscovitch P; Koretsky AP
    Mol Imaging Biol; 2018 Aug; 20(4):562-574. PubMed ID: 29396750
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.