BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16678020)

  • 1. Accumulation of macular xanthophylls in unsaturated membrane domains.
    Wisniewska A; Subczynski WK
    Free Radic Biol Med; 2006 May; 40(10):1820-6. PubMed ID: 16678020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of macular xanthophylls between domains in a model of photoreceptor outer segment membranes.
    Wisniewska A; Subczynski WK
    Free Radic Biol Med; 2006 Oct; 41(8):1257-65. PubMed ID: 17015172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural aspects of the antioxidant activity of lutein in a model of photoreceptor membranes.
    Wisniewska-Becker A; Nawrocki G; Duda M; Subczynski WK
    Acta Biochim Pol; 2012; 59(1):119-24. PubMed ID: 22428148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: the structural aspects.
    Sujak A; Gabrielska J; Grudziński W; Borc R; Mazurek P; Gruszecki WI
    Arch Biochem Biophys; 1999 Nov; 371(2):301-7. PubMed ID: 10545218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organisation of xanthophyll pigments lutein and zeaxanthin in lipid membranes formed with dipalmitoylphosphatidylcholine.
    Sujak A; Okulski W; Gruszecki WI
    Biochim Biophys Acta; 2000 Dec; 1509(1-2):255-63. PubMed ID: 11118537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can macular xanthophylls replace cholesterol in formation of the liquid-ordered phase in lipid-bilayer membranes?
    Subczynski WK; Wisniewska-Becker A; Widomska J
    Acta Biochim Pol; 2012; 59(1):109-14. PubMed ID: 22428142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macular zeaxanthins and lutein -- a review of dietary sources and bioavailability and some relationships with macular pigment optical density and age-related macular disease.
    Thurnham DI
    Nutr Res Rev; 2007 Dec; 20(2):163-79. PubMed ID: 19079868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can Xanthophyll-Membrane Interactions Explain Their Selective Presence in the Retina and Brain?
    Widomska J; Zareba M; Subczynski WK
    Foods; 2016 Mar; 5(1):. PubMed ID: 27030822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Location of macular xanthophylls in the most vulnerable regions of photoreceptor outer-segment membranes.
    Subczynski WK; Wisniewska A; Widomska J
    Arch Biochem Biophys; 2010 Dec; 504(1):61-6. PubMed ID: 20494651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xanthophyll pigments lutein and zeaxanthin in lipid multibilayers formed with dimyristoylphosphatidylcholine.
    Sujak A; Mazurek P; Gruszecki WI
    J Photochem Photobiol B; 2002 Aug; 68(1):39-44. PubMed ID: 12208035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and retinal capture of lutein and zeaxanthin with reference to age-related macular degeneration.
    Loane E; Nolan JM; O'Donovan O; Bhosale P; Bernstein PS; Beatty S
    Surv Ophthalmol; 2008; 53(1):68-81. PubMed ID: 18191658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macular pigment: new clinical methods of detection and the role of carotenoids in age-related macular degeneration.
    Leung IY
    Optometry; 2008 May; 79(5):266-72. PubMed ID: 18436167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why is Zeaxanthin the Most Concentrated Xanthophyll in the Central Fovea?
    Widomska J; SanGiovanni JP; Subczynski WK
    Nutrients; 2020 May; 12(5):. PubMed ID: 32392888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential lipid packing abilities and dynamics in giant unilamellar vesicles composed of short-chain saturated glycerol-phospholipids, sphingomyelin and cholesterol.
    Kahya N; Scherfeld D; Schwille P
    Chem Phys Lipids; 2005 Jun; 135(2):169-80. PubMed ID: 15869751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin.
    Kim SR; Nakanishi K; Itagaki Y; Sparrow JR
    Exp Eye Res; 2006 May; 82(5):828-39. PubMed ID: 16364293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xanthophyll accumulation in the human retina during supplementation with lutein or zeaxanthin - the LUXEA (LUtein Xanthophyll Eye Accumulation) study.
    Schalch W; Cohn W; Barker FM; Köpcke W; Mellerio J; Bird AC; Robson AG; Fitzke FF; van Kuijk FJ
    Arch Biochem Biophys; 2007 Feb; 458(2):128-35. PubMed ID: 17084803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of di-acetylation of the hydroxyl groups on the anti-tumor-proliferation activity of lutein and zeaxanthin.
    Sun Z; Yao H
    Asia Pac J Clin Nutr; 2007; 16 Suppl 1():447-52. PubMed ID: 17392148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulating the size and stabilization of lipid raft-like domains and using calcium ions as their probe.
    Szekely O; Schilt Y; Steiner A; Raviv U
    Langmuir; 2011 Dec; 27(24):14767-75. PubMed ID: 22066979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity.
    Latowski D; Akerlund HE; Strzałka K
    Biochemistry; 2004 Apr; 43(15):4417-20. PubMed ID: 15078086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.