BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16678087)

  • 1. CAMTA in cardiac hypertrophy.
    Schwartz RJ; Schneider MD
    Cell; 2006 May; 125(3):427-9. PubMed ID: 16678087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases.
    Song K; Backs J; McAnally J; Qi X; Gerard RD; Richardson JA; Hill JA; Bassel-Duby R; Olson EN
    Cell; 2006 May; 125(3):453-66. PubMed ID: 16678093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure.
    Nakamura TY; Iwata Y; Arai Y; Komamura K; Wakabayashi S
    Circ Res; 2008 Oct; 103(8):891-9. PubMed ID: 18776042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A functional variant in the coding region of CAMTA2 is associated with left ventricular hypertrophy by affecting the activation of Nkx2.5-dependent transcription.
    Song WH; Lin YH; Sun K; Zhang YH; Song Y; Hou LB; Zhang CN; Hui RT; Chen JZ
    J Hypertens; 2016 May; 34(5):942-9. PubMed ID: 26886562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of myocardial hypertrophy regulated by the interaction between mhrt and myocardin.
    Luo Y; Xu Y; Liang C; Xing W; Zhang T
    Cell Signal; 2018 Mar; 43():11-20. PubMed ID: 29199045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop.
    Kook H; Lepore JJ; Gitler AD; Lu MM; Wing-Man Yung W; Mackay J; Zhou R; Ferrari V; Gruber P; Epstein JA
    J Clin Invest; 2003 Sep; 112(6):863-71. PubMed ID: 12975471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy.
    Zhang CL; McKinsey TA; Chang S; Antos CL; Hill JA; Olson EN
    Cell; 2002 Aug; 110(4):479-88. PubMed ID: 12202037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel LIM protein Cal promotes cardiac differentiation by association with CSX/NKX2-5.
    Akazawa H; Kudoh S; Mochizuki N; Takekoshi N; Takano H; Nagai T; Komuro I
    J Cell Biol; 2004 Feb; 164(3):395-405. PubMed ID: 14757752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Class II HDACs mediate CaMK-dependent signaling to NRSF in ventricular myocytes.
    Nakagawa Y; Kuwahara K; Harada M; Takahashi N; Yasuno S; Adachi Y; Kawakami R; Nakanishi M; Tanimoto K; Usami S; Kinoshita H; Saito Y; Nakao K
    J Mol Cell Cardiol; 2006 Dec; 41(6):1010-22. PubMed ID: 17011572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tyrosine-rich domain within homeodomain transcription factor Nkx2-5 is an essential element in the early cardiac transcriptional regulatory machinery.
    Elliott DA; Solloway MJ; Wise N; Biben C; Costa MW; Furtado MB; Lange M; Dunwoodie S; Harvey RP
    Development; 2006 Apr; 133(7):1311-22. PubMed ID: 16510504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of cardiac transcription factors in cardiac hypertrophy.
    Akazawa H; Komuro I
    Circ Res; 2003 May; 92(10):1079-88. PubMed ID: 12775656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myocardial transcription factors are modulated during pathologic cardiac hypertrophy in vivo.
    Azakie A; Fineman JR; He Y
    J Thorac Cardiovasc Surg; 2006 Dec; 132(6):1262-71. PubMed ID: 17140938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HATs off to Hop: recruitment of a class I histone deacetylase incriminates a novel transcriptional pathway that opposes cardiac hypertrophy.
    Hamamori Y; Schneider MD
    J Clin Invest; 2003 Sep; 112(6):824-6. PubMed ID: 12975465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac transcription factor Csx/Nkx2-5: Its role in cardiac development and diseases.
    Akazawa H; Komuro I
    Pharmacol Ther; 2005 Aug; 107(2):252-68. PubMed ID: 15925411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.
    Weber D; Heisig J; Kneitz S; Wolf E; Eilers M; Gessler M
    J Mol Cell Cardiol; 2015 Feb; 79():79-88. PubMed ID: 25446183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone deacetylases facilitate sodium/calcium exchanger up-regulation in adult cardiomyocytes.
    Chandrasekaran S; Peterson RE; Mani SK; Addy B; Buchholz AL; Xu L; Thiyagarajan T; Kasiganesan H; Kern CB; Menick DR
    FASEB J; 2009 Nov; 23(11):3851-64. PubMed ID: 19638401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrator of Stress Responses Calmodulin Binding Transcription Activator 1 (Camta1) Regulates miR-212/miR-132 Expression and Insulin Secretion.
    Mollet IG; Malm HA; Wendt A; Orho-Melander M; Eliasson L
    J Biol Chem; 2016 Aug; 291(35):18440-52. PubMed ID: 27402838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the Mechanism of Hyperglycemia-Induced Fetal Cardiac Hypertrophy.
    Han SS; Wang G; Jin Y; Ma ZL; Jia WJ; Wu X; Wang XY; He MY; Cheng X; Li WJ; Yang X; Liu GS
    PLoS One; 2015; 10(9):e0139141. PubMed ID: 26418041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Jumonji represses atrial natriuretic factor gene expression by inhibiting transcriptional activities of cardiac transcription factors.
    Kim TG; Chen J; Sadoshima J; Lee Y
    Mol Cell Biol; 2004 Dec; 24(23):10151-60. PubMed ID: 15542826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles and post-translational regulation of cardiac class IIa histone deacetylase isoforms.
    Weeks KL; Avkiran M
    J Physiol; 2015 Apr; 593(8):1785-97. PubMed ID: 25362149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.