These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1011 related articles for article (PubMed ID: 16678117)
1. Generation of superoxide by the mitochondrial Complex I. Grivennikova VG; Vinogradov AD Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117 [TBL] [Abstract][Full Text] [Related]
2. Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria. Vinogradov AD; Grivennikova VG Biochemistry (Mosc); 2005 Feb; 70(2):120-7. PubMed ID: 15807648 [TBL] [Abstract][Full Text] [Related]
3. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay. Grivennikova VG; Kareyeva AV; Vinogradov AD Redox Biol; 2018 Jul; 17():192-199. PubMed ID: 29702406 [TBL] [Abstract][Full Text] [Related]
4. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates. Siebels I; Dröse S Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966 [TBL] [Abstract][Full Text] [Related]
5. Redox-dependent change of nucleotide affinity to the active site of the mammalian complex I. Grivennikova VG; Kotlyar AB; Karliner JS; Cecchini G; Vinogradov AD Biochemistry; 2007 Sep; 46(38):10971-8. PubMed ID: 17760425 [TBL] [Abstract][Full Text] [Related]
6. Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I. Grivennikova VG; Vinogradov AD Biochim Biophys Acta; 2013 Mar; 1827(3):446-54. PubMed ID: 23313413 [TBL] [Abstract][Full Text] [Related]
7. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Takeshige K; Minakami S Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543 [TBL] [Abstract][Full Text] [Related]
8. Reverse electron transport effects on NADH formation and metmyoglobin reduction. Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162 [TBL] [Abstract][Full Text] [Related]
9. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Panov AV; Scaduto RC Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638 [TBL] [Abstract][Full Text] [Related]
10. New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals. Ohnishi ST; Shinzawa-Itoh K; Ohta K; Yoshikawa S; Ohnishi T Biochim Biophys Acta; 2010 Dec; 1797(12):1901-9. PubMed ID: 20513438 [TBL] [Abstract][Full Text] [Related]
11. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation. Glinn MA; Lee CP; Ernster L Biochim Biophys Acta; 1997 Jan; 1318(1-2):246-54. PubMed ID: 9030267 [TBL] [Abstract][Full Text] [Related]
12. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques. Matsuzaki S; Kotake Y; Humphries KM Biochemistry; 2011 Dec; 50(50):10792-803. PubMed ID: 22091587 [TBL] [Abstract][Full Text] [Related]
13. Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level. Pecci L; Montefoschi G; Fontana M; Cavallini D Biochem Biophys Res Commun; 1994 Mar; 199(2):755-60. PubMed ID: 8135820 [TBL] [Abstract][Full Text] [Related]
14. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Poderoso JJ; Carreras MC; Lisdero C; Riobó N; Schöpfer F; Boveris A Arch Biochem Biophys; 1996 Apr; 328(1):85-92. PubMed ID: 8638942 [TBL] [Abstract][Full Text] [Related]
15. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. Davies KJ; Doroshow JH J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345 [TBL] [Abstract][Full Text] [Related]
16. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). Treberg JR; Quinlan CL; Brand MD J Biol Chem; 2011 Aug; 286(31):27103-10. PubMed ID: 21659507 [TBL] [Abstract][Full Text] [Related]
17. Is complex II involved in the inhibition of mitochondrial respiration by N-methyl-4-phenylpyridinium cation (MMP+) and N-methyl-beta-carbolines? Krueger MJ; Tan AK; Ackrell BA; Singer TP Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):673-6. PubMed ID: 8489493 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial Complex I superoxide production is attenuated by uncoupling. Dlasková A; Hlavatá L; Jezek J; Jezek P Int J Biochem Cell Biol; 2008; 40(10):2098-109. PubMed ID: 18358763 [TBL] [Abstract][Full Text] [Related]
19. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Turrens JF; Boveris A Biochem J; 1980 Nov; 191(2):421-7. PubMed ID: 6263247 [TBL] [Abstract][Full Text] [Related]
20. High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates. Muller FL; Liu Y; Abdul-Ghani MA; Lustgarten MS; Bhattacharya A; Jang YC; Van Remmen H Biochem J; 2008 Jan; 409(2):491-9. PubMed ID: 17916065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]