BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1010 related articles for article (PubMed ID: 16678117)

  • 1. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria.
    Vinogradov AD; Grivennikova VG
    Biochemistry (Mosc); 2005 Feb; 70(2):120-7. PubMed ID: 15807648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-dependent change of nucleotide affinity to the active site of the mammalian complex I.
    Grivennikova VG; Kotlyar AB; Karliner JS; Cecchini G; Vinogradov AD
    Biochemistry; 2007 Sep; 46(38):10971-8. PubMed ID: 17760425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay.
    Grivennikova VG; Kareyeva AV; Vinogradov AD
    Redox Biol; 2018 Jul; 17():192-199. PubMed ID: 29702406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2013 Mar; 1827(3):446-54. PubMed ID: 23313413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse electron transport effects on NADH formation and metmyoglobin reduction.
    Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA
    Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals.
    Ohnishi ST; Shinzawa-Itoh K; Ohta K; Yoshikawa S; Ohnishi T
    Biochim Biophys Acta; 2010 Dec; 1797(12):1901-9. PubMed ID: 20513438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation.
    Glinn MA; Lee CP; Ernster L
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):246-54. PubMed ID: 9030267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.
    Matsuzaki S; Kotake Y; Humphries KM
    Biochemistry; 2011 Dec; 50(50):10792-803. PubMed ID: 22091587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level.
    Pecci L; Montefoschi G; Fontana M; Cavallini D
    Biochem Biophys Res Commun; 1994 Mar; 199(2):755-60. PubMed ID: 8135820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles.
    Poderoso JJ; Carreras MC; Lisdero C; Riobó N; Schöpfer F; Boveris A
    Arch Biochem Biophys; 1996 Apr; 328(1):85-92. PubMed ID: 8638942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ; Doroshow JH
    J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I).
    Treberg JR; Quinlan CL; Brand MD
    J Biol Chem; 2011 Aug; 286(31):27103-10. PubMed ID: 21659507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is complex II involved in the inhibition of mitochondrial respiration by N-methyl-4-phenylpyridinium cation (MMP+) and N-methyl-beta-carbolines?
    Krueger MJ; Tan AK; Ackrell BA; Singer TP
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):673-6. PubMed ID: 8489493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial Complex I superoxide production is attenuated by uncoupling.
    Dlasková A; Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2008; 40(10):2098-109. PubMed ID: 18358763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria.
    Turrens JF; Boveris A
    Biochem J; 1980 Nov; 191(2):421-7. PubMed ID: 6263247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates.
    Muller FL; Liu Y; Abdul-Ghani MA; Lustgarten MS; Bhattacharya A; Jang YC; Van Remmen H
    Biochem J; 2008 Jan; 409(2):491-9. PubMed ID: 17916065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.