BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 16678118)

  • 1. Alpha-helical antimicrobial peptides--using a sequence template to guide structure-activity relationship studies.
    Zelezetsky I; Tossi A
    Biochim Biophys Acta; 2006 Sep; 1758(9):1436-49. PubMed ID: 16678118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphipathic, alpha-helical antimicrobial peptides.
    Tossi A; Sandri L; Giangaspero A
    Biopolymers; 2000; 55(1):4-30. PubMed ID: 10931439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphipathic alpha helical antimicrobial peptides.
    Giangaspero A; Sandri L; Tossi A
    Eur J Biochem; 2001 Nov; 268(21):5589-600. PubMed ID: 11683882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of in vitro activities and modes of action of synthetic antimicrobial peptides derived from an alpha-helical 'sequence template'.
    Pag U; Oedenkoven M; Sass V; Shai Y; Shamova O; Antcheva N; Tossi A; Sahl HG
    J Antimicrob Chemother; 2008 Feb; 61(2):341-52. PubMed ID: 18174202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the biological properties of amphipathic alpha-helical antimicrobial peptides: rational use of minimal amino acid substitutions.
    Zelezetsky I; Pag U; Sahl HG; Tossi A
    Peptides; 2005 Dec; 26(12):2368-76. PubMed ID: 15939509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different α-helical propensity.
    Zhu X; Zhang L; Wang J; Ma Z; Xu W; Li J; Shan A
    Acta Biomater; 2015 May; 18():155-67. PubMed ID: 25735802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents.
    Wiradharma N; Khoe U; Hauser CA; Seow SV; Zhang S; Yang YY
    Biomaterials; 2011 Mar; 32(8):2204-12. PubMed ID: 21168911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tools for Designing Amphipathic Helical Antimicrobial Peptides.
    Juretić D; Vukičević D; Tossi A
    Methods Mol Biol; 2017; 1548():23-34. PubMed ID: 28013494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial and cytolytic properties of the frog skin peptide, kassinatuerin-1 and its L- and D-lysine-substituted derivatives.
    Conlon JM; Abraham B; Galadari S; Knoop FC; Sonnevend A; Pál T
    Peptides; 2005 Nov; 26(11):2104-10. PubMed ID: 15885852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of unnatural amino acids to probe structure-activity relationships and mode-of-action of antimicrobial peptides.
    Tossi A; Scocchi M; Zahariev S; Gennaro R
    Methods Mol Biol; 2012; 794():169-83. PubMed ID: 21956562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents.
    Conlon JM; Al-Ghaferi N; Abraham B; Leprince J
    Methods; 2007 Aug; 42(4):349-57. PubMed ID: 17560323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7.
    Conlon JM; Galadari S; Raza H; Condamine E
    Chem Biol Drug Des; 2008 Jul; 72(1):58-64. PubMed ID: 18554256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and synthesis of novel antimicrobial peptides on the basis of alpha helical domain of Tenecin 1, an insect defensin protein, and structure-activity relationship study.
    Ahn HS; Cho W; Kang SH; Ko SS; Park MS; Cho H; Lee KH
    Peptides; 2006 Apr; 27(4):640-8. PubMed ID: 16226345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial peptides design by evolutionary multiobjective optimization.
    Maccari G; Di Luca M; Nifosí R; Cardarelli F; Signore G; Boccardi C; Bifone A
    PLoS Comput Biol; 2013; 9(9):e1003212. PubMed ID: 24039565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic alpha-helical antimicrobial peptides.
    Sato H; Feix JB
    Biochim Biophys Acta; 2006 Sep; 1758(9):1245-56. PubMed ID: 16697975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-activity relations of parasin I, a histone H2A-derived antimicrobial peptide.
    Koo YS; Kim JM; Park IY; Yu BJ; Jang SA; Kim KS; Park CB; Cho JH; Kim SC
    Peptides; 2008 Jul; 29(7):1102-8. PubMed ID: 18406495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of novel peptide analogs with potent fungicidal activity, based on PMAP-23 antimicrobial peptide isolated from porcine myeloid.
    Lee DG; Kim PI; Park Y; Woo ER; Choi JS; Choi CH; Hahm KS
    Biochem Biophys Res Commun; 2002 Apr; 293(1):231-8. PubMed ID: 12054589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designed low amphipathic peptides with alpha-helical propensity exhibiting antimicrobial activity via a lipid domain formation mechanism.
    Yamamoto N; Tamura A
    Peptides; 2010 May; 31(5):794-805. PubMed ID: 20109510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides.
    Waghu FH; Barai RS; Gurung P; Idicula-Thomas S
    Nucleic Acids Res; 2016 Jan; 44(D1):D1094-7. PubMed ID: 26467475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.