These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 16678120)
1. Pulling single bacteriorhodopsin out of a membrane: Comparison of simulation and experiment. Cieplak M; Filipek S; Janovjak H; Krzyśko KA Biochim Biophys Acta; 2006 Apr; 1758(4):537-44. PubMed ID: 16678120 [TBL] [Abstract][Full Text] [Related]
2. Probing the energy landscape of the membrane protein bacteriorhodopsin. Janovjak H; Struckmeier J; Hubain M; Kedrov A; Kessler M; Müller DJ Structure; 2004 May; 12(5):871-9. PubMed ID: 15130479 [TBL] [Abstract][Full Text] [Related]
3. Packing of transmembrane helices in bacteriorhodopsin folding: structure and thermodynamics. Chen CC; Wei CC; Sun YC; Chen CM J Struct Biol; 2008 May; 162(2):237-47. PubMed ID: 18262435 [TBL] [Abstract][Full Text] [Related]
4. Unfolding pathways of individual bacteriorhodopsins. Oesterhelt F; Oesterhelt D; Pfeiffer M; Engel A; Gaub HE; Müller DJ Science; 2000 Apr; 288(5463):143-6. PubMed ID: 10753119 [TBL] [Abstract][Full Text] [Related]
5. Forced Unfolding Mechanism of Bacteriorhodopsin as Revealed by Coarse-Grained Molecular Dynamics. Yamada T; Yamato T; Mitaku S Biophys J; 2016 Nov; 111(10):2086-2098. PubMed ID: 27851934 [TBL] [Abstract][Full Text] [Related]
6. Mechanical unfolding of ubiquitin molecules. Cieplak M; Marszalek PE J Chem Phys; 2005 Nov; 123(19):194903. PubMed ID: 16321109 [TBL] [Abstract][Full Text] [Related]
7. Free-energy changes of bacteriorhodopsin point mutants measured by single-molecule force spectroscopy. Jacobson DR; Perkins TT Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753487 [TBL] [Abstract][Full Text] [Related]
8. Small-angle scattering gives direct structural information about a membrane protein inside a lipid environment. Kynde SA; Skar-Gislinge N; Pedersen MC; Midtgaard SR; Simonsen JB; Schweins R; Mortensen K; Arleth L Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):371-83. PubMed ID: 24531471 [TBL] [Abstract][Full Text] [Related]
9. Prediction of the positioning of the seven transmembrane alpha-helices of bacteriorhodopsin. A molecular simulation study. Tuffery P; Etchebest C; Popot JL; Lavery R J Mol Biol; 1994 Mar; 236(4):1105-22. PubMed ID: 8120890 [TBL] [Abstract][Full Text] [Related]
10. Dynamics and orientation of transmembrane peptide from bacteriorhodopsin incorporated into lipid bilayer as revealed by solid state (31)P and (13)C NMR spectroscopy. Kimura S; Naito A; Tuzi S; Saitô H Biopolymers; 2002 Feb; 63(2):122-31. PubMed ID: 11787000 [TBL] [Abstract][Full Text] [Related]
11. Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Bayburt TH; Sligar SG Protein Sci; 2003 Nov; 12(11):2476-81. PubMed ID: 14573860 [TBL] [Abstract][Full Text] [Related]
12. Unfolding pathways of native bacteriorhodopsin depend on temperature. Janovjak H; Kessler M; Oesterhelt D; Gaub H; Müller DJ EMBO J; 2003 Oct; 22(19):5220-9. PubMed ID: 14517259 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics simulation of the unfolding of individual bacteriorhodopsin helices in sodium dodecyl sulfate micelles. Krishnamani V; Lanyi JK Biochemistry; 2012 Feb; 51(6):1061-9. PubMed ID: 22304411 [TBL] [Abstract][Full Text] [Related]
14. Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer. Curran AR; Templer RH; Booth PJ Biochemistry; 1999 Jul; 38(29):9328-36. PubMed ID: 10413507 [TBL] [Abstract][Full Text] [Related]
15. Lipid-induced conformational changes of an integral membrane protein: an infrared spectroscopic study of the effects of Triton X-100 treatment on the purple membrane of Halobacterium halobium ET1001. Barnett SM; Dracheva S; Hendler R; Levin IW Biochemistry; 1996 Apr; 35(14):4558-67. PubMed ID: 8605206 [TBL] [Abstract][Full Text] [Related]
16. A novel pattern recognition algorithm to classify membrane protein unfolding pathways with high-throughput single-molecule force spectroscopy. Marsico A; Labudde D; Sapra T; Muller DJ; Schroeder M Bioinformatics; 2007 Jan; 23(2):e231-6. PubMed ID: 17237097 [TBL] [Abstract][Full Text] [Related]
17. Velocity-dependent mechanical unfolding of bacteriorhodopsin is governed by a dynamic interaction network. Kappel C; Grubmüller H Biophys J; 2011 Feb; 100(4):1109-19. PubMed ID: 21320457 [TBL] [Abstract][Full Text] [Related]
18. Simulation studies on bacteriorhodopsin alpha-helices. Son HS; Sansom MS Eur Biophys J; 2000; 28(8):674-82. PubMed ID: 10663534 [TBL] [Abstract][Full Text] [Related]
19. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin. Kim JM; Booth PJ; Allen SJ; Khorana HG J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776 [TBL] [Abstract][Full Text] [Related]
20. A new hybrid protein for production of recombinant bacteriorhodopsin in Escherichia coli. Nekrasova OV; Wulfson AN; Tikhonov RV; Yakimov SA; Simonova TN; Tagvey AI; Dolgikh DA; Ostrovsky MA; Kirpichnikov MP J Biotechnol; 2010 Jun; 147(3-4):145-50. PubMed ID: 20363267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]