These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
387 related articles for article (PubMed ID: 16678242)
1. Modelling the dispersion of radionuclides following short duration releases to rivers: Part 1. Water and sediment. Smith JT; Bowes MJ; Denison FH Sci Total Environ; 2006 Sep; 368(2-3):485-501. PubMed ID: 16678242 [TBL] [Abstract][Full Text] [Related]
2. Modelling the dispersion of radionuclides following short duration releases to rivers: Part 2. Uptake by fish. Smith JT Sci Total Environ; 2006 Sep; 368(2-3):502-18. PubMed ID: 16647745 [TBL] [Abstract][Full Text] [Related]
3. Model testing of radioactive contamination by 90Sr, 137Cs and 239,240Pu of water and bottom sediments in the Techa River (Southern Urals, Russia). Kryshev II; Boyer P; Monte L; Brittain JE; Dzyuba NN; Krylov AL; Kryshev AI; Nosov AV; Sanina KD; Zheleznyak MI Sci Total Environ; 2009 Mar; 407(7):2349-60. PubMed ID: 19167743 [TBL] [Abstract][Full Text] [Related]
4. Intercomparison exercise on the determination of radionuclides in sediment from the Dudvah River. Durec F; Betti M; Durecova A Appl Radiat Isot; 2008 Nov; 66(11):1706-10. PubMed ID: 18599301 [TBL] [Abstract][Full Text] [Related]
5. Radioactivity levels in major French rivers: summary of monitoring chronicles acquired over the past thirty years and current status. Eyrolle F; Claval D; Gontier G; Antonelli C J Environ Monit; 2008 Jul; 10(7):800-11. PubMed ID: 18688446 [TBL] [Abstract][Full Text] [Related]
6. Up-to-date concentrations of long-lived artificial radionuclides in the Tom and Ob rivers in the area influenced by discharges from Siberian chemical combine. Nikitin AI; Kryshev II; Bashkirov NI; Valetova NK; Dunaev GE; Kabanov AI; Katrich IY; Krutovsky AO; Nikitin VA; Petrenko GI; Polukhina AM; Selivanova GV; Shkuro VN J Environ Radioact; 2012 Jun; 108():15-23. PubMed ID: 22153591 [TBL] [Abstract][Full Text] [Related]
7. The dispersion of 137Cs and 239,240Pu in the Rhone River plume: a numerical model. Periáñez R J Environ Radioact; 2004; 77(3):301-24. PubMed ID: 15381323 [TBL] [Abstract][Full Text] [Related]
8. A new general mechanistic river model for radionuclides from single pulse fallouts which can be run by readily accessible driving variables. Håkanson L J Environ Radioact; 2005; 80(3):357-82. PubMed ID: 15725508 [TBL] [Abstract][Full Text] [Related]
9. Transport and distribution of artificial gamma-emitting radionuclides in the River Yenisei and its sediment. Semizhon T; Röllin S; Spasova Y; Klemt E J Environ Radioact; 2010 May; 101(5):385-402. PubMed ID: 20346553 [TBL] [Abstract][Full Text] [Related]
10. Probabilistic distribution coefficients (K(d)s) in freshwater for radioisotopes of Ag, Am, Ba, Be, Ce, Co, Cs, I, Mn, Pu, Ra, Ru, Sb, Sr and Th: implications for uncertainty analysis of models simulating the transport of radionuclides in rivers. Ciffroy P; Durrieu G; Garnier JM J Environ Radioact; 2009 Sep; 100(9):785-94. PubMed ID: 19114288 [TBL] [Abstract][Full Text] [Related]
11. A new general dynamic model predicting radionuclide concentrations and fluxes in coastal areas from readily accessible driving variables. Håkanson L J Environ Radioact; 2005; 78(2):217-45. PubMed ID: 15511560 [TBL] [Abstract][Full Text] [Related]
12. Radioactive contamination of bottom sediments in the upper reaches of the Techa river: analysis of the data obtained in 1950 and 1951. Mokrov YG Radiat Environ Biophys; 2003 Oct; 42(3):155-68. PubMed ID: 14579132 [TBL] [Abstract][Full Text] [Related]
13. Tracing the origin of suspended sediment in a large Mediterranean river by combining continuous river monitoring and measurement of artificial and natural radionuclides. Zebracki M; Eyrolle-Boyer F; Evrard O; Claval D; Mourier B; Gairoard S; Cagnat X; Antonelli C Sci Total Environ; 2015 Jan; 502():122-32. PubMed ID: 25255199 [TBL] [Abstract][Full Text] [Related]
14. Modelling the transport of suspended particulate matter by the Rhone River plume (France). Implications for pollutant dispersion. Periáñez R Environ Pollut; 2005 Jan; 133(2):351-64. PubMed ID: 15519466 [TBL] [Abstract][Full Text] [Related]
15. The current content of artificial radionuclides in the water of the Tobol-Irtysh river system (from the mouth of the Iset River to the confluence with the Ob River). Nikitin AI; Chumichev VB; Valetova NK; Katrich IY; Kabanov AI; Dunaev GE; Shkuro VN; Rodin VM; Mironenko AN; Kireeva EV J Environ Radioact; 2007; 96(1-3):138-43. PubMed ID: 17428590 [TBL] [Abstract][Full Text] [Related]
16. Distribution of artificial radionuclides in deep sediments of the Mediterranean Sea. Garcia-Orellana J; Pates JM; Masqué P; Bruach JM; Sanchez-Cabeza JA Sci Total Environ; 2009 Jan; 407(2):887-98. PubMed ID: 18986686 [TBL] [Abstract][Full Text] [Related]
17. Caesium-137 and strontium-90 temporal series in the Tagus River: experimental results and a modelling study. Miró C; Baeza A; Madruga MJ; Periañez R J Environ Radioact; 2012 Nov; 113():21-31. PubMed ID: 22613729 [TBL] [Abstract][Full Text] [Related]
18. Performance assessment model development and parameter acquisition for analysis of the transport of natural radionuclides in a Mediterranean watershed. Agüero A Sci Total Environ; 2005 Sep; 348(1-3):32-50. PubMed ID: 16162312 [TBL] [Abstract][Full Text] [Related]
19. On the sensitivity of a marine dispersion model to parameters describing the transfers of radionuclides between the liquid and solid phases. Periáñez R J Environ Radioact; 2004; 73(1):101-15. PubMed ID: 15001298 [TBL] [Abstract][Full Text] [Related]
20. Vertical distribution of anthropogenic radionuclides in cores from contaminated floodplains of the Yenisey River. Standring WJ; Brown JE; Dowdall M; Korobova EM; Linnik VG; Volosov AG J Environ Radioact; 2009 Dec; 100(12):1109-20. PubMed ID: 19446379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]