These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 16678267)
1. The mechanism of kinetic inhibition of Cu(II)-induced oxidation of low density lipoprotein by lanthanide ions. Liu H; Cheng Y; Lu J; Li R; Wang K J Inorg Biochem; 2006 Jul; 100(7):1280-9. PubMed ID: 16678267 [TBL] [Abstract][Full Text] [Related]
2. The mechanism of apolipoprotein B-100 thiol depletion during oxidative modification of low-density lipoprotein. Ferguson E; Singh RJ; Hogg N; Kalyanaraman B Arch Biochem Biophys; 1997 May; 341(2):287-94. PubMed ID: 9169017 [TBL] [Abstract][Full Text] [Related]
3. EPR spin-trapping evidence for the direct, one-electron reduction of tert-butylhydroperoxide to the tert-butoxyl radical by copper(II): paradigm for a previously overlooked reaction in the initiation of lipid peroxidation. Jones CM; Burkitt MJ J Am Chem Soc; 2003 Jun; 125(23):6946-54. PubMed ID: 12783547 [TBL] [Abstract][Full Text] [Related]
4. Direct evidence for apo B-100-mediated copper reduction: studies with purified apo B-100 and detection of tryptophanyl radicals. Batthyány C; Santos CX; Botti H; Cerveñansky C; Radi R; Augusto O; Rubbo H Arch Biochem Biophys; 2000 Dec; 384(2):335-40. PubMed ID: 11368321 [TBL] [Abstract][Full Text] [Related]
5. Apolipoprotein B carbonyl formation is enhanced by lipid peroxidation during copper-mediated oxidation of human low-density lipoproteins. Yan LJ; Lodge JK; Traber MG; Packer L Arch Biochem Biophys; 1997 Mar; 339(1):165-71. PubMed ID: 9056246 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of the antioxidant to pro-oxidant switch in the behavior of dehydroascorbate during LDL oxidation by copper(II) ions. Horsley ET; Burkitt MJ; Jones CM; Patterson RA; Harris LK; Moss NJ; del Rio JD; Leake DS Arch Biochem Biophys; 2007 Sep; 465(2):303-14. PubMed ID: 17689484 [TBL] [Abstract][Full Text] [Related]
7. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Burkitt MJ Arch Biochem Biophys; 2001 Oct; 394(1):117-35. PubMed ID: 11566034 [TBL] [Abstract][Full Text] [Related]
8. Cubane variations: syntheses, structures, and magnetic property analyses of lanthanide(III)-copper(II) architectures with controlled nuclearities. Aronica C; Chastanet G; Pilet G; Le Guennic B; Robert V; Wernsdorfer W; Luneau D Inorg Chem; 2007 Jul; 46(15):6108-19. PubMed ID: 17602474 [TBL] [Abstract][Full Text] [Related]
9. Structural changes of low density lipoproteins with Cu2+ and glucose induced oxidation. Gallego-Nicasio J; López-Rodríguez G; Martínez R; Tarancón MJ; Fraile MV; Carmona P Biopolymers; 2003; 72(6):514-20. PubMed ID: 14587073 [TBL] [Abstract][Full Text] [Related]
10. Cu(I) availability paradoxically antagonizes antioxidant consumption and lipid peroxidation during the initiation phase of copper-induced LDL oxidation. Bagnati M; Bordone R; Perugini C; Cau C; Albano E; Bellomo G Biochem Biophys Res Commun; 1998 Dec; 253(2):235-40. PubMed ID: 9878521 [TBL] [Abstract][Full Text] [Related]
11. Simulation of the induction of oxidation of low-density lipoprotein by high copper concentrations: evidence for a nonconstant rate of initiation. Abuja PM; Albertini R; Esterbauer H Chem Res Toxicol; 1997 Jun; 10(6):644-51. PubMed ID: 9208170 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, potentiometric, kinetic, and NMR Studies of 1,4,7,10-tetraazacyclododecane-1,7-bis(acetic acid)-4,10-bis(methylenephosphonic acid) (DO2A2P) and its complexes with Ca(II), Cu(II), Zn(II) and lanthanide(III) ions. Kálmán FK; Baranyai Z; Tóth I; Bányai I; Király R; Brücher E; Aime S; Sun X; Sherry AD; Kovács Z Inorg Chem; 2008 May; 47(9):3851-62. PubMed ID: 18380456 [TBL] [Abstract][Full Text] [Related]
13. Effect of ursodeoxycholic acid on copper induced oxidation of low density lipoprotein. Geetha A; Surendran R Pharmazie; 2005 Aug; 60(8):609-13. PubMed ID: 16124405 [TBL] [Abstract][Full Text] [Related]
14. Decrease in the particle size of low-density lipoprotein (LDL) by oxidation. Hidaka A; Inoue K; Kutsukake S; Adachi M; Kakuta Y; Kojo S Bioorg Med Chem Lett; 2005 Jun; 15(11):2781-5. PubMed ID: 15911255 [TBL] [Abstract][Full Text] [Related]
15. Spin-labeling study of the oxidative damage to low-density lipoprotein. Singh RJ; Feix JB; Mchaourab HS; Hogg N; Kalyanaraman B Arch Biochem Biophys; 1995 Jun; 320(1):155-61. PubMed ID: 7793976 [TBL] [Abstract][Full Text] [Related]
16. Effect of caffeine on oxidation susceptibility of human plasma low density lipoproteins. Krisko A; Kveder M; Pifat G Clin Chim Acta; 2005 May; 355(1-2):47-53. PubMed ID: 15820477 [TBL] [Abstract][Full Text] [Related]
17. A comparison of the kinetics of low-density lipoprotein oxidation induced by copper or by gamma-rays: influence of radiation dose-rate and copper concentration. Khalil A; Fülöp T Can J Physiol Pharmacol; 2001 Feb; 79(2):114-21. PubMed ID: 11233561 [TBL] [Abstract][Full Text] [Related]
18. Comparative time-courses of copper-ion-mediated protein and lipid oxidation in low-density lipoprotein. Knott HM; Baoutina A; Davies MJ; Dean RT Arch Biochem Biophys; 2002 Apr; 400(2):223-32. PubMed ID: 12054433 [TBL] [Abstract][Full Text] [Related]
19. Effects of oxidation on the structure and stability of human low-density lipoprotein. Jayaraman S; Gantz DL; Gursky O Biochemistry; 2007 May; 46(19):5790-7. PubMed ID: 17444660 [TBL] [Abstract][Full Text] [Related]
20. Diversity of crystal structure with different lanthanide ions involving in situ oxidation-hydrolysis reaction. Cheng JW; Zheng ST; Yang GY Dalton Trans; 2007 Sep; (36):4059-66. PubMed ID: 17828367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]