BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 16678969)

  • 1. Nociceptive plasticity inhibits adaptive learning in the spinal cord.
    Ferguson AR; Crown ED; Grau JW
    Neuroscience; 2006 Aug; 141(1):421-31. PubMed ID: 16678969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Instrumental learning within the spinal cord: underlying mechanisms and implications for recovery after injury.
    Grau JW; Crown ED; Ferguson AR; Washburn SN; Hook MA; Miranda RC
    Behav Cogn Neurosci Rev; 2006 Dec; 5(4):191-239. PubMed ID: 17099112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that descending serotonergic systems protect spinal cord plasticity against the disruptive effect of uncontrollable stimulation.
    Crown ED; Grau JW
    Exp Neurol; 2005 Nov; 196(1):164-76. PubMed ID: 16139268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pain and learning in a spinal system: contradictory outcomes from common origins.
    Baumbauer KM; Young EE; Joynes RL
    Brain Res Rev; 2009 Oct; 61(2):124-43. PubMed ID: 19481111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurokinin receptors modulate the impact of uncontrollable stimulation on adaptive spinal plasticity.
    Baumbauer KM; Young EE; Hoy KC; Joynes RL
    Behav Neurosci; 2007 Oct; 121(5):1082-94. PubMed ID: 17907839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instrumental learning within the spinal cord: VI. The NMDA receptor antagonist, AP5, disrupts the acquisition and maintenance of an acquired flexion response.
    Joynes RL; Janjua K; Grau JW
    Behav Brain Res; 2004 Oct; 154(2):431-8. PubMed ID: 15313031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unilateral subcutaneous bee venom but not formalin injection causes contralateral hypersensitized wind-up and after-discharge of the spinal withdrawal reflex in anesthetized spinal rats.
    You HJ; Arendt-Nielsen L
    Exp Neurol; 2005 Sep; 195(1):148-60. PubMed ID: 15950221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposure to intermittent nociceptive stimulation under pentobarbital anesthesia disrupts spinal cord function in rats.
    Washburn SN; Patton BC; Ferguson AR; Hudson KL; Grau JW
    Psychopharmacology (Berl); 2007 Jun; 192(2):243-52. PubMed ID: 17297638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preserving and restoring behavioral potential within the spinal cord using an instrumental training paradigm.
    Crown ED; Grau JW
    J Neurophysiol; 2001 Aug; 86(2):845-55. PubMed ID: 11495955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrathecal infusions of anisomycin impact the learning deficit but not the learning effect observed in spinal rats that have received instrumental training.
    Baumbauer KM; Young EE; Hoy KC; France JL; Joynes RL
    Behav Brain Res; 2006 Oct; 173(2):299-309. PubMed ID: 16914213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain.
    Qu XX; Cai J; Li MJ; Chi YN; Liao FF; Liu FY; Wan Y; Han JS; Xing GG
    Exp Neurol; 2009 Feb; 215(2):298-307. PubMed ID: 19046970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-type calcium channels and NMDA receptors: a determinant duo for short-term nociceptive plasticity.
    Fossat P; Sibon I; Le Masson G; Landry M; Nagy F
    Eur J Neurosci; 2007 Jan; 25(1):127-35. PubMed ID: 17241274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AMPA receptor mediated behavioral plasticity in the isolated rat spinal cord.
    Hoy KC; Huie JR; Grau JW
    Behav Brain Res; 2013 Jan; 236(1):319-326. PubMed ID: 22982187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipopolysaccharide induces a spinal learning deficit that is blocked by IL-1 receptor antagonism.
    Young EE; Baumbauer KM; Elliot A; Joynes RL
    Brain Behav Immun; 2007 Aug; 21(6):748-57. PubMed ID: 17382514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opioid regulation of spinal cord plasticity: evidence the kappa-2 opioid receptor agonist GR89696 inhibits learning within the rat spinal cord.
    Washburn SN; Maultsby ML; Puga DA; Grau JW
    Neurobiol Learn Mem; 2008 Jan; 89(1):1-16. PubMed ID: 17983769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-derived neurotrophic factor promotes adaptive plasticity within the spinal cord and mediates the beneficial effects of controllable stimulation.
    Huie JR; Garraway SM; Baumbauer KM; Hoy KC; Beas BS; Montgomery KS; Bizon JL; Grau JW
    Neuroscience; 2012 Jan; 200():74-90. PubMed ID: 22056599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The excitatory and inhibitory effects of nitrous oxide on spinal neuronal responses to noxious stimulation.
    Antognini JF; Atherley RJ; Dutton RC; Laster MJ; Eger EI; Carstens E
    Anesth Analg; 2007 Apr; 104(4):829-35. PubMed ID: 17377089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrathecal administration of neurokinin 1 and neurokinin 2 receptor antagonists undermines the savings effect in spinal rats seen in an instrumental learning paradigm.
    Baumbauer KM; Young EE; Hoy KC; Joynes RL
    Behav Neurosci; 2007 Feb; 121(1):186-99. PubMed ID: 17324063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The neonatal injury-induced spinal learning deficit in adult rats: central mechanisms.
    Young EE; Baumbauer KM; Hillyer JE; Patterson AM; Hoy KC; Mintz EM; Joynes RL
    Behav Neurosci; 2008 Jun; 122(3):589-600. PubMed ID: 18513129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Administration of a Ca-super(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor prevents the learning deficit observed in spinal rats after noncontingent shock administration.
    Baumbauer KM; Young EE; Hoy KC; Abood A; Joynes RL
    Behav Neurosci; 2007 Jun; 121(3):570-8. PubMed ID: 17592948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.