BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 16679009)

  • 1. A method of binding kinetics of a ligand to micropatterned proteins on a microfluidic chip.
    Lee CS; Lee SH; Kim YG; Lee JH; Kim YK; Kim BG
    Biosens Bioelectron; 2007 Jan; 22(6):891-8. PubMed ID: 16679009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(dimethyl siloxane)-based protein chip for simultaneous detection of multiple samples: use of glycidyl methacrylate photopolymer for site-specific protein immobilization.
    Park KH; Park HG; Kim JH; Seong KH
    Biosens Bioelectron; 2006 Dec; 22(5):613-20. PubMed ID: 16546371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Faradaic electrochemical detection of protein interactions by integrated neuromorphic CMOS sensors.
    Jacquot BC; Muñoz N; Branch DW; Kan EC
    Biosens Bioelectron; 2008 May; 23(10):1503-11. PubMed ID: 18281208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic immunosensor systems.
    Bange A; Halsall HB; Heineman WR
    Biosens Bioelectron; 2005 Jun; 20(12):2488-503. PubMed ID: 15854821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of laminar flow patterning for miniaturised biochemical assays.
    Regenberg B; Krühne U; Beyer M; Pedersen LH; Simon M; Thomas OR; Nielsen J; Ahl T
    Lab Chip; 2004 Dec; 4(6):654-7. PubMed ID: 15570380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever.
    Hwang KS; Lee JH; Park J; Yoon DS; Park JH; Kim TS
    Lab Chip; 2004 Dec; 4(6):547-52. PubMed ID: 15570363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays.
    Zimmermann M; Delamarche E; Wolf M; Hunziker P
    Biomed Microdevices; 2005 Jun; 7(2):99-110. PubMed ID: 15940422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging.
    Yuk JS; Kim HS; Jung JW; Jung SH; Lee SJ; Kim WJ; Han JA; Kim YM; Ha KS
    Biosens Bioelectron; 2006 Feb; 21(8):1521-8. PubMed ID: 16095894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisited BIA-MS combination: entire "on-a-chip" processing leading to the proteins identification at low femtomole to sub-femtomole levels.
    Boireau W; Rouleau A; Lucchi G; Ducoroy P
    Biosens Bioelectron; 2009 Jan; 24(5):1121-7. PubMed ID: 18829299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A prototype microfluidic chip using fluorescent yeast for detection of toxic compounds.
    García-Alonso J; Greenway GM; Hardege JD; Haswell SJ
    Biosens Bioelectron; 2009 Jan; 24(5):1508-11. PubMed ID: 18805688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic label-free screening chip: a marriage of multiplexing and high throughput analysis using surface plasmon resonance imaging.
    Krishnamoorthy G; Carlen ET; Bomer JG; Wijnperlé D; deBoer HL; van den Berg A; Schasfoort RB
    Lab Chip; 2010 Apr; 10(8):986-90. PubMed ID: 20358104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel detection and quantification using nine immunoassays in a protein microarray for drug from serum samples.
    Du H; Yang W; Xing W; Su Y; Cheng J
    Biomed Microdevices; 2005 Jun; 7(2):143-6. PubMed ID: 15940429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel microfluidic surface plasmon resonance imaging arrays.
    Ouellet E; Lausted C; Lin T; Yang CW; Hood L; Lagally ET
    Lab Chip; 2010 Mar; 10(5):581-8. PubMed ID: 20162233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic array platform for simultaneous lipid bilayer membrane formation.
    Zagnoni M; Sandison ME; Morgan H
    Biosens Bioelectron; 2009 Jan; 24(5):1235-40. PubMed ID: 18760585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of mixing on reaction-diffusion kinetics for protein hydrogel-based microchips.
    Zubtsov DA; Ivanov SM; Rubina AY; Dementieva EI; Chechetkin VR; Zasedatelev AS
    J Biotechnol; 2006 Mar; 122(1):16-27. PubMed ID: 16182399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of fluorescence generated in microfluidic channel using in-fiber grooves and in-fiber microchannel sensors.
    Irawan R; Tjin SC
    Methods Mol Biol; 2009; 503():403-22. PubMed ID: 19151955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection.
    Wang CH; Lee GB
    Biosens Bioelectron; 2005 Sep; 21(3):419-25. PubMed ID: 16076430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of biomolecular interaction between biotin and streptavidin on a self-assembled monolayer using magnetic nanoparticles.
    Arakaki A; Hideshima S; Nakagawa T; Niwa D; Tanaka T; Matsunaga T; Osaka T
    Biotechnol Bioeng; 2004 Nov; 88(4):543-6. PubMed ID: 15384052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of electrospun nanofibrous PVDF membranes into a microfluidic chip assembled by PDMS and scotch tape for immunoassays.
    Liu Y; Yang D; Yu T; Jiang X
    Electrophoresis; 2009 Sep; 30(18):3269-75. PubMed ID: 19722208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.