BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16679066)

  • 41. Why metabolic enzymes are essential or nonessential for growth of Escherichia coli K12 on glucose.
    Kim J; Copley SD
    Biochemistry; 2007 Nov; 46(44):12501-11. PubMed ID: 17935357
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mathematical model of galactose regulation and metabolic consumption in yeast.
    Mitre TM; Mackey MC; Khadra A
    J Theor Biol; 2016 Oct; 407():238-258. PubMed ID: 27395401
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network.
    Kjeldsen KR; Nielsen J
    Biotechnol Bioeng; 2009 Feb; 102(2):583-97. PubMed ID: 18985611
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Natural variation in preparation for nutrient depletion reveals a cost-benefit tradeoff.
    Wang J; Atolia E; Hua B; Savir Y; Escalante-Chong R; Springer M
    PLoS Biol; 2015 Jan; 13(1):e1002041. PubMed ID: 25626068
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computational identification of altered metabolism using gene expression and metabolic pathways.
    Nam H; Lee J; Lee D
    Biotechnol Bioeng; 2009 Jul; 103(4):835-43. PubMed ID: 19378263
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the local optimal solutions of metabolic regulatory networks using information guided genetic algorithm approach and clustering analysis.
    Zheng Y; Yeh CW; Yang CD; Jang SS; Chu IM
    J Biotechnol; 2007 Aug; 131(2):159-67. PubMed ID: 17669537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions.
    Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M
    FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential analysis of protein expression of Bifidobacterium grown on different carbohydrates.
    He T; Roelofsen H; Alvarez-Llamas G; de Vries M; Venema K; Welling GW; Vonk RJ
    J Microbiol Methods; 2007 May; 69(2):364-70. PubMed ID: 17397953
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcription: a mechanism for short-term memory.
    Ptashne M
    Curr Biol; 2008 Jan; 18(1):R25-7. PubMed ID: 18177708
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational study on ratio-sensing in yeast galactose utilization pathway.
    Hong J; Hua B; Springer M; Tang C
    PLoS Comput Biol; 2020 Dec; 16(12):e1007960. PubMed ID: 33275601
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lactose and D-galactose catabolism in the filamentous fungus Aspergillus nidulans.
    Fekete E; Padra J; Szentirmai A; Karaffa L
    Acta Microbiol Immunol Hung; 2008 Jun; 55(2):119-24. PubMed ID: 18595317
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extrapolation of metabolic pathways as an aid to modelling completely sequenced nonSaccharomyces yeasts.
    Iragne F; Nikolski M; Sherman D
    FEMS Yeast Res; 2008 Feb; 8(1):132-9. PubMed ID: 17714476
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of initial glucose concentrations on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1.
    Jo JH; Lee DS; Kim J; Park JM
    J Microbiol Biotechnol; 2009 Mar; 19(3):291-8. PubMed ID: 19349755
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gene expression profiles of metabolic enzyme transcripts in Alzheimer's disease.
    Brooks WM; Lynch PJ; Ingle CC; Hatton A; Emson PC; Faull RL; Starkey MP
    Brain Res; 2007 Jan; 1127(1):127-35. PubMed ID: 17109828
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters.
    Bertilsson M; Andersson J; Lidén G
    Bioprocess Biosyst Eng; 2008 Jun; 31(4):369-77. PubMed ID: 17985160
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A guide to integrating transcriptional regulatory and metabolic networks using PROM (probabilistic regulation of metabolism).
    Simeonidis E; Chandrasekaran S; Price ND
    Methods Mol Biol; 2013; 985():103-12. PubMed ID: 23417801
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The posttranslational modification of phosphoglucomutase is regulated by galactose induction and glucose repression in Saccharomyces cerevisiae.
    Fu L; Bounelis P; Dey N; Browne BL; Marchase RB; Bedwell DM
    J Bacteriol; 1995 Jun; 177(11):3087-94. PubMed ID: 7768805
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Search for glucose/galactose-binding proteins in newly discovered protein sequences using molecular modeling techniques and structural analysis.
    Patra M; Mandal C
    Glycobiology; 2006 Oct; 16(10):959-68. PubMed ID: 16835461
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The yeast galactose network as a quantitative model for cellular memory.
    Stockwell SR; Landry CR; Rifkin SA
    Mol Biosyst; 2015 Jan; 11(1):28-37. PubMed ID: 25328105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.