These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Automatic detection and classification of hypodense hepatic lesions on contrast-enhanced venous-phase CT. Bilello M; Gokturk SB; Desser T; Napel S; Jeffrey RB; Beaulieu CF Med Phys; 2004 Sep; 31(9):2584-93. PubMed ID: 15487741 [TBL] [Abstract][Full Text] [Related]
3. A retrieval-based computer-aided diagnosis system for the characterization of liver lesions in CT scans. Dankerl P; Cavallaro A; Tsymbal A; Costa MJ; Suehling M; Janka R; Uder M; Hammon M Acad Radiol; 2013 Dec; 20(12):1526-34. PubMed ID: 24200479 [TBL] [Abstract][Full Text] [Related]
4. Pulmonary nodule detection in CT images with quantized convergence index filter. Matsumoto S; Kundel HL; Gee JC; Gefter WB; Hatabu H Med Image Anal; 2006 Jun; 10(3):343-52. PubMed ID: 16542867 [TBL] [Abstract][Full Text] [Related]
5. A similarity learning approach to content-based image retrieval: application to digital mammography. El-Naqa I; Yang Y; Galatsanos NP; Nishikawa RM; Wernick MN IEEE Trans Med Imaging; 2004 Oct; 23(10):1233-44. PubMed ID: 15493691 [TBL] [Abstract][Full Text] [Related]
6. Computer aided characterization of the solitary pulmonary nodule using volumetric and contrast enhancement features. Shah SK; McNitt-Gray MF; Rogers SR; Goldin JG; Suh RD; Sayre JW; Petkovska I; Kim HJ; Aberle DR Acad Radiol; 2005 Oct; 12(10):1310-9. PubMed ID: 16179208 [TBL] [Abstract][Full Text] [Related]
7. Measurement of mesothelioma on thoracic CT scans: a comparison of manual and computer-assisted techniques. Armato SG; Oxnard GR; MacMahon H; Vogelzang NJ; Kindler HL; Kocherginsky M; Starkey A Med Phys; 2004 May; 31(5):1105-15. PubMed ID: 15191298 [TBL] [Abstract][Full Text] [Related]
8. Computer-aided differentiation of malignant from benign solitary pulmonary nodules imaged by high-resolution CT. Iwano S; Nakamura T; Kamioka Y; Ikeda M; Ishigaki T Comput Med Imaging Graph; 2008 Jul; 32(5):416-22. PubMed ID: 18501556 [TBL] [Abstract][Full Text] [Related]
9. Computer-aided diagnosis for preoperative invasion depth of gastric cancer with dual-energy spectral CT imaging. Li C; Shi C; Zhang H; Hui C; Lam KM; Zhang S Acad Radiol; 2015 Feb; 22(2):149-57. PubMed ID: 25249448 [TBL] [Abstract][Full Text] [Related]
10. Effective staging of fibrosis by the selected texture features of liver: Which one is better, CT or MR imaging? Zhang X; Gao X; Liu BJ; Ma K; Yan W; Liling L; Yuhong H; Fujita H Comput Med Imaging Graph; 2015 Dec; 46 Pt 2():227-36. PubMed ID: 26455963 [TBL] [Abstract][Full Text] [Related]
11. Medical image analysis of 3D CT images based on extension of Haralick texture features. Tesar L; Shimizu A; Smutek D; Kobatake H; Nawano S Comput Med Imaging Graph; 2008 Sep; 32(6):513-20. PubMed ID: 18614335 [TBL] [Abstract][Full Text] [Related]
12. Shape-constraint region growing for delineation of hepatic metastases on contrast-enhanced computed tomograph scans. Zhao B; Schwartz LH; Jiang L; Colville J; Moskowitz C; Wang L; Leftowitz R; Liu F; Kalaigian J Invest Radiol; 2006 Oct; 41(10):753-62. PubMed ID: 16971799 [TBL] [Abstract][Full Text] [Related]
13. Preliminary data using computed tomography texture analysis for the classification of hypervascular liver lesions: generation of a predictive model on the basis of quantitative spatial frequency measurements--a work in progress. Raman SP; Schroeder JL; Huang P; Chen Y; Coquia SF; Kawamoto S; Fishman EK J Comput Assist Tomogr; 2015; 39(3):383-95. PubMed ID: 25700222 [TBL] [Abstract][Full Text] [Related]
14. Temporal subtraction in chest radiography: automated assessment of registration accuracy. Armato SG; Doshi DJ; Engelmann R; Croteau CL; MacMahon H Med Phys; 2006 May; 33(5):1239-49. PubMed ID: 16752558 [TBL] [Abstract][Full Text] [Related]
15. Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. Joo S; Yang YS; Moon WK; Kim HC IEEE Trans Med Imaging; 2004 Oct; 23(10):1292-300. PubMed ID: 15493696 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of algorithm for extraction of lung regions in CT exams. Melo P; Vasconcelos G; Diniz P; França C; Diniz J; Novaes M Stud Health Technol Inform; 2013; 192():1176. PubMed ID: 23920950 [TBL] [Abstract][Full Text] [Related]
17. Computer-aided detection of lung nodules using outer surface features. Demir Ö; Yılmaz Çamurcu A Biomed Mater Eng; 2015; 26 Suppl 1():S1213-22. PubMed ID: 26405880 [TBL] [Abstract][Full Text] [Related]
18. CT angiography of peripheral arterial bypass grafts: Accuracy and time-effectiveness of quantitative image analysis with an automated software tool. Keller D; Wildermuth S; Boehm T; Boskamp T; Mayer D; Schuster HL; Marincek B; Alkadhi H Acad Radiol; 2006 May; 13(5):610-20. PubMed ID: 16627202 [TBL] [Abstract][Full Text] [Related]
19. A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier. Gletsos M; Mougiakakou SG; Matsopoulos GK; Nikita KS; Nikita AS; Kelekis D IEEE Trans Inf Technol Biomed; 2003 Sep; 7(3):153-62. PubMed ID: 14518728 [TBL] [Abstract][Full Text] [Related]
20. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. Suzuki K; Li F; Sone S; Doi K IEEE Trans Med Imaging; 2005 Sep; 24(9):1138-50. PubMed ID: 16156352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]