These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16679358)

  • 1. Analysis of binding at a single spatially localized cluster of binding sites by fluorescence recovery after photobleaching.
    Sprague BL; Müller F; Pego RL; Bungay PM; Stavreva DA; McNally JG
    Biophys J; 2006 Aug; 91(4):1169-91. PubMed ID: 16679358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite element model for protein transport in vivo.
    Sadegh Zadeh K; Elman HC; Montas HJ; Shirmohammadi A
    Biomed Eng Online; 2007 Jun; 6():24. PubMed ID: 17598901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of binding reactions by fluorescence recovery after photobleaching.
    Sprague BL; Pego RL; Stavreva DA; McNally JG
    Biophys J; 2004 Jun; 86(6):3473-95. PubMed ID: 15189848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-validating FRAP and FCS to quantify the impact of photobleaching on in vivo binding estimates.
    Stasevich TJ; Mueller F; Michelman-Ribeiro A; Rosales T; Knutson JR; McNally JG
    Biophys J; 2010 Nov; 99(9):3093-101. PubMed ID: 21044608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching.
    Mueller F; Wach P; McNally JG
    Biophys J; 2008 Apr; 94(8):3323-39. PubMed ID: 18199661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of biomolecule mass transport and binding rate parameters in living cells by inverse modeling.
    Sadegh Zadeh K; Montas HJ; Shirmohammadi A
    Theor Biol Med Model; 2006 Oct; 3():36. PubMed ID: 17034642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A closed-form analytic expression for FRAP formula for the binding diffusion model.
    Kang M; Kenworthy AK
    Biophys J; 2008 Jul; 95(2):L13-5. PubMed ID: 18487305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucocorticoid receptor mutants demonstrate increased motility inside the nucleus of living cells: time of fluorescence recovery after photobleaching (FRAP) is an integrated measure of receptor function.
    Kino T; Liou SH; Charmandari E; Chrousos GP
    Mol Med; 2004; 10(7-12):80-8. PubMed ID: 16307173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nonfitting method using a spatial sine window transform for inhomogeneous effective-diffusion measurements by FRAP.
    Orlova DY; Bártová E; Maltsev VP; Kozubek S; Chernyshev AV
    Biophys J; 2011 Jan; 100(2):507-16. PubMed ID: 21244847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous photobleaching in fluorescence recovery after photobleaching measurements due to excitation saturation--a case study for fluorescein.
    Braeckmans K; Stubbe BG; Remaut K; Demeester J; De Smedt SC
    J Biomed Opt; 2006; 11(4):044013. PubMed ID: 16965170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitation of glucocorticoid receptor DNA-binding dynamics by single-molecule microscopy and FRAP.
    Groeneweg FL; van Royen ME; Fenz S; Keizer VI; Geverts B; Prins J; de Kloet ER; Houtsmuller AB; Schmidt TS; Schaaf MJ
    PLoS One; 2014; 9(3):e90532. PubMed ID: 24632838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of binding mechanisms of nuclear proteins using confocal scanning laser microscopy and FRAP.
    Tsibidis GD; Ripoll J
    J Theor Biol; 2008 Aug; 253(4):755-68. PubMed ID: 18538796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inference of protein kinetics by stochastic modeling and simulation of fluorescence recovery after photobleaching experiments.
    Rapsomaniki MA; Cinquemani E; Giakoumakis NN; Kotsantis P; Lygeros J; Lygerou Z
    Bioinformatics; 2015 Feb; 31(3):355-62. PubMed ID: 25273108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the scope of quantitative FRAP analysis.
    Hallen MA; Layton AT
    J Theor Biol; 2010 Jan; 262(2):295-305. PubMed ID: 19836405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Parameter Inference from FRAP Data: an Analysis Motivated by Pattern Formation in the Drosophila Wing Disc.
    Lin L; Othmer HG
    Bull Math Biol; 2017 Mar; 79(3):448-497. PubMed ID: 28101740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single- and two-photon fluorescence recovery after photobleaching.
    Sullivan KD; Majewska AK; Brown EB
    Cold Spring Harb Protoc; 2015 Jan; 2015(1):pdb.top083519. PubMed ID: 25561627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Line FRAP with the confocal laser scanning microscope for diffusion measurements in small regions of 3-D samples.
    Braeckmans K; Remaut K; Vandenbroucke RE; Lucas B; De Smedt SC; Demeester J
    Biophys J; 2007 Mar; 92(6):2172-83. PubMed ID: 17208970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative FRAP in analysis of molecular binding dynamics in vivo.
    McNally JG
    Methods Cell Biol; 2008; 85():329-51. PubMed ID: 18155469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know?
    Mueller F; Mazza D; Stasevich TJ; McNally JG
    Curr Opin Cell Biol; 2010 Jun; 22(3):403-11. PubMed ID: 20413286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurement of association and dissociation rates of DNA binding in live cells by fluorescence correlation spectroscopy.
    Michelman-Ribeiro A; Mazza D; Rosales T; Stasevich TJ; Boukari H; Rishi V; Vinson C; Knutson JR; McNally JG
    Biophys J; 2009 Jul; 97(1):337-46. PubMed ID: 19580772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.