These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 16680471)
21. Analysis of a mechanistic Markov model for gene duplicates evolving under subfunctionalization. Stark TL; Liberles DA; Holland BR; O'Reilly MM BMC Evol Biol; 2017 Jan; 17(1):38. PubMed ID: 28143390 [TBL] [Abstract][Full Text] [Related]
22. Markovian approximation to the finite loci coalescent with recombination along multiple sequences. Hobolth A; Jensen JL Theor Popul Biol; 2014 Dec; 98():48-58. PubMed ID: 24486389 [TBL] [Abstract][Full Text] [Related]
23. Approximating genealogies for partially linked neutral loci under a selective sweep. Pfaffelhuber P; Studeny A J Math Biol; 2007 Sep; 55(3):299-330. PubMed ID: 17396267 [TBL] [Abstract][Full Text] [Related]
24. Coalescent size versus coalescent time with strong selection. Campbell RB Bull Math Biol; 2007 Oct; 69(7):2249-59. PubMed ID: 17546476 [TBL] [Abstract][Full Text] [Related]
25. Coalescent theory for a completely random mating monoecious population. Pollak E Math Biosci; 2007 Feb; 205(2):315-24. PubMed ID: 17011593 [TBL] [Abstract][Full Text] [Related]
26. A genetic system based on simulated crossover: stability analysis and relationships with neural nets. Carpentieri M Evol Comput; 2009; 17(2):167-201. PubMed ID: 19413487 [TBL] [Abstract][Full Text] [Related]
27. The fixation probability of two competing beneficial mutations. Yu F; Etheridge A Theor Popul Biol; 2010 Aug; 78(1):36-45. PubMed ID: 20417222 [TBL] [Abstract][Full Text] [Related]
28. Fixation probability in a two-locus intersexual selection model. Durand G; Lessard S Theor Popul Biol; 2016 Jun; 109():75-87. PubMed ID: 27059474 [TBL] [Abstract][Full Text] [Related]
29. The stationary distribution of a sample from the Wright-Fisher diffusion model with general small mutation rates. Burden CJ; Griffiths RC J Math Biol; 2019 Mar; 78(4):1211-1224. PubMed ID: 30426201 [TBL] [Abstract][Full Text] [Related]
30. The Exact Stochastic Process of the Haploid Multi-Allelic Wright-Fisher Mutation Model. Noland JK; Thorvaldsen S IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(1):69-83. PubMed ID: 38010931 [TBL] [Abstract][Full Text] [Related]
31. Reconstructing pedigrees: some identifiability questions for a recombination-mutation model. Thatte BD J Math Biol; 2013 Jan; 66(1-2):37-74. PubMed ID: 22246066 [TBL] [Abstract][Full Text] [Related]
32. Diffusion approximations for one-locus multi-allele kin selection, mutation and random drift in group-structured populations: a unifying approach to selection models in population genetics. Lessard S J Math Biol; 2009 Nov; 59(5):659-96. PubMed ID: 19156416 [TBL] [Abstract][Full Text] [Related]
33. Diffusion approximation for an age-class-structured population under viability and fertility selection with application to fixation probability of an advantageous mutant. Soares CD; Lessard S J Math Biol; 2019 Dec; 79(6-7):2069-2110. PubMed ID: 31468115 [TBL] [Abstract][Full Text] [Related]
34. Stationary distribution of a 2-island 2-allele Wright-Fisher diffusion model with slow mutation and migration rates. Burden CJ; Griffiths RC Theor Popul Biol; 2018 Dec; 124():70-80. PubMed ID: 30308179 [TBL] [Abstract][Full Text] [Related]
35. Dynamics of finite populations. I. The expected time to fixation or loss and the probability of fixation of an allele in a haploid population of variable size. Cook RD; Nassar RF Biometrics; 1972 Jun; 28(2):373-84. PubMed ID: 5037860 [No Abstract] [Full Text] [Related]
36. A simple method for computing exact probabilities of mutation numbers. Uyenoyama MK; Takebayashi N Theor Popul Biol; 2004 May; 65(3):271-84. PubMed ID: 15066423 [TBL] [Abstract][Full Text] [Related]
37. The evolutionary rate of duplicated genes under concerted evolution. Mano S; Innan H Genetics; 2008 Sep; 180(1):493-505. PubMed ID: 18757936 [TBL] [Abstract][Full Text] [Related]
38. Exact simulation of conditioned Wright-Fisher models. Zhao L; Lascoux M; Waxman D J Theor Biol; 2014 Dec; 363():419-26. PubMed ID: 25173081 [TBL] [Abstract][Full Text] [Related]
39. On the stochastic evolution of finite populations. Chalub FACC; Souza MO J Math Biol; 2017 Dec; 75(6-7):1735-1774. PubMed ID: 28493042 [TBL] [Abstract][Full Text] [Related]