These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 166808)

  • 1. [ATP synthesis connected with the functioning of membrane proton pumps at the octane/water interface].
    Iaguzhinskiĭ LS; Boguslavsliĭ LI; Volkov AG; Rakhmaninova AB
    Dokl Akad Nauk SSSR; 1975 Apr; 221(6):1465-8. PubMed ID: 166808
    [No Abstract]   [Full Text] [Related]  

  • 2. [Proton transfer from water to octane coupled with the reaction of ATP hydrolysis by soluble ATPase from chloroplasts].
    Boguslavskiĭ LI; Volkov AG; Kozlov IA; Mal'ian AN
    Biofizika; 1976; 21(2):286-8. PubMed ID: 131585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Proton transfer from water to octane, catalyzed by soluble bacterial ATPase].
    Boguslavskiĭ LI; Volkov AG; Kozlov IA; Mileĭkovskaia EI
    Dokl Akad Nauk SSSR; 1975 May; 222(3):726-9. PubMed ID: 124244
    [No Abstract]   [Full Text] [Related]  

  • 4. Synthesis of ATP coupled with action of membrane protonic pumps at the octane-water interface.
    Yaguzhinsky LS; Boguslavsky LI; Volkov AG; Rakhmaninova AB
    Nature; 1976 Feb; 259(5543):494-6. PubMed ID: 130557
    [No Abstract]   [Full Text] [Related]  

  • 5. [Synthesis of ATP and free radicals in an aqueous solution, containing NADH, riboflavin, ADP and inorganic phosphate].
    Lozinova TA; Arutiunian AE
    Biofizika; 1990; 35(6):901-5. PubMed ID: 1965685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Proton and electron transport through bilayer membranes and the decane/water interface in the presence of chlorophyll].
    Volkov AG; Lozhkin BT; Boguslavskiĭ LI
    Dokl Akad Nauk SSSR; 1975; 220(5):1207-10. PubMed ID: 164330
    [No Abstract]   [Full Text] [Related]  

  • 7. Water extrusion in isolated subcellular fractions. V. Adenosinetriphosphate hydrolysis by mitochondria during the reaction.
    Rendi R; Ginsburg GA
    Biochem Z; 1965 Aug; 342(3):319-29. PubMed ID: 4222419
    [No Abstract]   [Full Text] [Related]  

  • 8. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation.
    Racker E; Stoeckenius W
    J Biol Chem; 1974 Jan; 249(2):662-3. PubMed ID: 4272126
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies of the oligomycin-sensitive ATPase from yeast mitochondria. Reconstitution of ATP-32Pi exchange in the presence of phospholipids.
    Ryrie IJ
    J Supramol Struct; 1975; 3(3):242-7. PubMed ID: 171520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Oxidative phosphorylation and membrane potential].
    Skulachev VP; Iasaĭtiene DK
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1971; 9(93):27-36. PubMed ID: 4143973
    [No Abstract]   [Full Text] [Related]  

  • 11. [Prospects of the Gomori lead method in the electron microscopic histochemistry of ATPase].
    Raĭkhlin NT; Bukhvalov IB
    Arkh Anat Gistol Embriol; 1973 Dec; 65(12):109-18. PubMed ID: 4132047
    [No Abstract]   [Full Text] [Related]  

  • 12. Irgarol inhibits the synthesis of ATP in mitochondria from rat liver.
    Bragadin M; Cima F; Ballarin L; Manente S
    Chemosphere; 2006 Dec; 65(10):1898-903. PubMed ID: 16979217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and some properties of oligomycin-sensitive adenosine triphosphatase from beef heart mitochondria and its morphological study.
    Yamamoto G
    Acta Med Okayama (1952); 1970 Apr; 24(2):143-59. PubMed ID: 4247891
    [No Abstract]   [Full Text] [Related]  

  • 14. [Phospholipids and oxidative phosphorylation].
    Mikel'saar Kh; Severina II; Skulachev VP
    Usp Sovrem Biol; 1974; 78(3):348-70. PubMed ID: 4374840
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of pyridine nucleotides on ATP synthesis and hydrolysis by the mitochondrial ATPase.
    Baizabal-Aguirre VM; Behrens MI; Gómez-Puyou A; Tuena de Gómez-Puyou M
    Biochem Int; 1990 Nov; 22(4):677-84. PubMed ID: 2150308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mechanism of action of soluble mitochondrial ATPase].
    Metel'skiĭ ST; Kozlov IA
    Dokl Akad Nauk SSSR; 1974; 219(4):1010-3. PubMed ID: 4279811
    [No Abstract]   [Full Text] [Related]  

  • 17. [Electrogenic function of submitochondrial particles at the water-octane interphases].
    Boguslavskiĭ LI; Volkov AG; Kondrashin AA; Metel'skiĭ ST; Iasaĭtis AA
    Biokhimiia; 1976 Jul; 41(6):1047-51. PubMed ID: 194625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-driven, electrogenic proton translocation in plasma membrane vesicles from turtle bladder cells.
    Youmans SJ; Worman HJ; Brodsky WA
    Prog Clin Biol Res; 1983; 126():159-71. PubMed ID: 6136986
    [No Abstract]   [Full Text] [Related]  

  • 19. [Mixed anhydrides of nucleotides and mesitylene carbonic acid--new inhibitors of mitochondrial ATPase].
    Kozlov IA; Shalamberidze MV; Novikova IIu; Sokolova NI; Shabarova ZA
    Biokhimiia; 1977 Sep; 42(9):1704-10. PubMed ID: 199289
    [No Abstract]   [Full Text] [Related]  

  • 20. Uniformly oriented bacterial F0F1-ATPase immobilized on a semi-permeable membrane: a step towards biotechnological energy transduction.
    Bhattacharya S; Schiavone M; Nayak A; Bhattacharya SK
    Biotechnol Appl Biochem; 2004 Jun; 39(Pt 3):293-301. PubMed ID: 15154840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.